This was a question on our Algorithms final exam. It's verbatim because the prof let us take a copy of the exam home.
- (20 points) Let I = {r1,r2,...,rn} be a set of n arbitrary positive integers and the values in I are distinct. I is not given in any sorted order. Suppose we want to find a subset I' of I such that the total sum of all elements in I' is exactly 100*ceil(n^.5) (each element of I can appear at most once in I'). Present an O(n) time algorithm for solving this problem.
As far as I can tell, it's basically a special case of the knapsack problem, otherwise known as the subset-sum problem ... both of which are in NP and in theory impossible to solve in linear time?
So ... was this a trick question?
This SO post basically explains that a pseudo-polynomial (linear) time approximation can be done if the weights are bounded, but in the exam problem the weights aren't bounded and either way given the overall difficulty of the exam I'd be shocked if the prof expected us to know/come up with an obscure dynamic optimization algorithm.
There are two things that make this problem possible:
Basically, this problem screams dynamic programming with each input being checked against each part of the 'reached number' space somehow.
The solution ends up being a matter of ensuring numbers don't reach off of themselves (by scanning in the right direction), of only looking at each number once, and of giving ourselves enough information to reconstruct the solution afterwards.
Here's some C# code that should solve the problem in the given time:
I haven't actually tested the above code, so beware typos and off-by-ones.