Strange result when setting array elements (C++/pybind11)

289 views Asked by At

I'm trying to write a C++ extension with pybind11. The function ultimately will take several numpy-arrays as input and return several numpy-arrays as output. I have been trying to pass the target numpy-arrays directly and change the values in-place in the C++ function.

I am testing with the following code:

C++

#include "pybind11/pybind11.h"
#include "pybind11/numpy.h"

namespace py = pybind11;

int nparraytest(py::array_t<float> A, py::array_t<float> B, py::array_t<float> C, py::array_t<float> D) {
    py::buffer_info Abuf = A.request();
    py::buffer_info Bbuf = B.request();
    py::buffer_info Cbuf = C.request();
    py::buffer_info Dbuf = D.request();

    int lxA = Abuf.shape[0];

    double* Aptr = (double*)Abuf.ptr;
    double* Bptr = (double*)Bbuf.ptr;
    double* Cptr = (double*)Cbuf.ptr;
    double* Dptr = (double*)Dbuf.ptr;

    for (int i = 0; i < lxA; i++) {
        int i30 = 3 * i;
        int i31 = i30 + 1;
        int i32 = i30 + 2;

        //optionA
        //Cptr[i30] = Aptr[i30];
        //Cptr[i31] = Aptr[i31];
        //Cptr[i32] = Aptr[i32];

        //Option B
        Cptr[i30] = Aptr[i30];
        Cptr[i31] = Aptr[i31];
        Cptr[i32] = Bptr[2];

        Dptr[i30] = Aptr[i30];
        Dptr[i31] = Aptr[i31];
        Dptr[i32] = Aptr[i32];
    }

    return lxA;
}

PYBIND11_MODULE(SeqRT, m) {
    m.def("nparraytest", &nparraytest, "Test");
}

python

import numpy as np
import SeqRT

if __name__ == '__main__':
    #initialize arrays
    A = np.arange(15, dtype = np.float32).reshape((5,3))
    B = np.arange(15, dtype = np.float32).reshape((5,3))
    C = np.zeros((5,3), dtype = np.float32)
    D = np.zeros((5,3), dtype = np.float32)
    
    lxA = SeqRT.nparraytest(A, B, C, D)
    
    print(lxA)
    print(A)
    print(B)
    print(C)
    print(D)

Now, whether I use the code in Option A or Option B, arrays A, B and D always end up as expected, as well as array C, i.e.

[[ 0.  1.  2.]
 [ 3.  4.  5.]
 [ 6.  7.  8.]
 [ 9. 10. 11.]
 [12. 13. 14.]]

However, with option B I get this result for array C

[[ 0.  1.  2.]
 [ 3.  4.  5.]
 [ 6.  7.  8.]
 [ 9.  4.  5.]
 [12. 13. 14.]]

As you can see, the values 10. and 11. are different. In fact, with other input as array B also the values 4. and 5. can end up pretty random. Instead, I would expect this:

[[ 0.  1.  2.]
 [ 3.  4.  2.]
 [ 6.  7.  2.]
 [ 9. 10.  2.]
 [12. 13.  2.]]

I don't know what my mistake is:

  • Is it due to some wrong usage of pybind/numpy arrays?
  • Is it a general C++ indexing mistake?
  • Furthermore, is this in-place method even good or should I create two buffer arrrays and pack them as a tuple for return?
0

There are 0 answers