I have some probability density function:
T = 10000
tmin = 0
tmax = 10**20
t = np.linspace(tmin, tmax, T)
time = np.asarray(t) #this line may be redundant
for j in range(T):
timedep_PD[j]= probdensity_func(x,time[j],initial_state)
I want to integrate it over two distinct regions of x. I tried the following to split the timedep_PD
array into two spatial regions and then proceeded to integrate:
step = abs(xmin - xmax) / T
l1 = int(np.floor((abs(ab - xmin)* T ) / abs(xmin - xmax)))
l2 = int(np.floor((abs(bd - ab)* T ) / abs(xmin - xmax)))
#For spatial region 1
R1 = np.empty([l1])
R1 = x[:l1]
for i in range(T):
Pd1[i] = Pd[i][:l1]
#For spatial region 2
Pd2 = np.empty([T,l2])
R2 = np.empty([l2])
R2 = x[l1:l1+l2]
for i in range(T):
Pd2[i] = Pd[i][l1:l1+l2]
#Integrating over each spatial region
for i in range(T):
P[0][i] = np.trapz(Pd1[i],R1)
P[1][i] = np.trapz(Pd2[i],R2)
Is there an easier/more clear way to go about splitting up a probability density function into two spatial regions and then integrating within each spatial region at each time-step?
The loops can be eliminated by using vectorized operations instead. It's not clear whether
Pd
is a 2D NumPy array; it it's something else (e.g., a list of lists), it should be converted to a 2D NumPy array withnp.array(...)
. After that you can do this:No need to loop over the time index; the slicing happens for all times at once (having
:
in place of an index means "all valid indices").Similarly,
np.trapz
can integrate all time slices at once:Each P1 and P2 is now a time series of integrals. The
axis
parameter determines along which axis Pd1 gets integrated - it's the second axis, i.e., space.