I have parquet data in S3 partitioned by nyc_date in the format s3://mybucket/mykey/nyc_date=Y-m-d/*.gz.parquet
.
I have a DateType column event_date
that for some reason throws this error when I try to read from S3 and write to hdfs using EMR.
from pyspark.sql import SparkSession
spark = SparkSession.builder.enableHiveSupport().getOrCreate()
df = spark.read.parquet('s3a://mybucket/mykey/')
df.limit(100).write.parquet('hdfs:///output/', compression='gzip')
Error:
java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary
at org.apache.parquet.column.Dictionary.decodeToInt(Dictionary.java:48)
at org.apache.spark.sql.execution.vectorized.OnHeapColumnVector.getInt(OnHeapColumnVector.java:233)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:389)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Here's what I figured out:
- Local works :-): I copied over some data locally in the same format and can query fine.
- Avoid selecting event_date works :-): Selecting all 50+ columns but for
event_date
doesn't cause any errors. - Explicit read path throws error :-(: Changing the read path to
's3a://mybucket/mykey/*/*.gz.parquet'
still throws error. - Specifying schema still throws error :-(: specifying the schema before loading still causes the same error.
- I can load the data including eastern_date into a data warehouse :-).
Really weird this causes an error only for a DateType column. I don't have any other DateType columns.
Using Spark 2.0.2 and EMR 5.2.0.
I just used StringType instead of DateType when writing parquet. Don't have the issue anymore.