I'm trying to optimize the following: people (column id) should go to one of the points A:G. Let's say that exactly two people (from a group of 14) must go to one of the 7 locations. I want to minimize the sum of the distances covered.
id <- 1:14
A <- c(9.37,4.45,4.42,2.90,3.44,5.46,5.96,5.91,5.74,9.74,8.35,1.46,8.87,9.37)
B <- c(8.36,3.28,3.27,1.16,2.34,3.73,4.22,4.27,4.06,8.99,7.33,0.41,8.28,9.06)
C <- c(7.29,6.98,6.97,4.26,6.04,6.58,7.04,5.99,5.98,7.20,6.37,3.82,6.17,6.36)
D <- c(6.07,5.16,5.17,2.14,4.41,3.97,4.40,3.30,3.27,6.62,5.04,2.75,5.91,6.76)
E <- c(6.32,5.03,5.03,2.02,4.25,4.00,4.45,3.46,3.41,6.85,5.30,2.52,6.12,6.94)
F <- c(4.54,6.54,6.56,3.57,5.89,4.71,5.05,3.38,3.50,5.03,3.52,4.34,4.34,5.32)
G <- c(3.96,8.86,8.88,5.85,8.14,7.08,7.39,5.56,5.74,3.59,3.25,6.33,2.55,3.05)
dataset <- data.frame(id,A,B,C,D,E,F,G)
I thought of writing a linear programming problem with binary variables.
Is it possible to solve in R?
I found a solution. Just for the record (if useful to someone). It is necessary to add equations with the restrictions that each person would go to a single point