Set the values out of the defined set to a given value (f.e. NaN) for a column in pandas data frame

81 views Asked by At

Having a defined set of valid values, all the pandas data frame column values out of it should be set to a given value, f.e. NaN. The values contained in the set and data frame can be assumed to be of numerical type.

Having the following valid values set and data frame:

valid = {5, 22}
df = pd.DataFrame({'a': [5, 1, 7, 22],'b': [12, 3 , 10, 9]})

    a   b
0   5  12
1   1   3
2   7  10
3  22   9

Setting the valid values on column a would result in:

     a   b
0    5  12
1  NaN   3
2  NaN  10
3   22   9
2

There are 2 answers

0
jpp On BEST ANSWER

You can use pd.Series.where:

df['a'].where(df['a'].isin(valid), inplace=True)

print(df)

      a   b
0   5.0  12
1   NaN   3
2   NaN  10
3  22.0   9

A few points to note:

  • pd.Series.isin will work more efficiently with a list versus a set. See also Pandas pd.Series.isin performance with set versus array.
  • Your series will necessarily be converted to float since NaN is considered float.
  • The operation does not require assignment to a variable when inplace=True is used.
0
U13-Forward On

Why not isin:

df.loc[~df['a'].isin(valid),'a']=pd.np.nan

Example:

import pandas as pd
valid = {5, 22}
df = pd.DataFrame({'a': [5, 1, 7, 22],'b': [12, 3 , 10, 9]})
df.loc[~df['a'].isin(valid),'a']=pd.np.nan
print(df)

Output:

      a   b
0   5.0  12
1   NaN   3
2   NaN  10
3  22.0   9