Same output in neural network for each input after training

130 views Asked by At

I try to create DQN neural network. I have convolution neural network. Input has shape: None x WIDTH x HEIGHT x FRAME_COUNT. FULLY_CONNECTED_SIZE constant calculated such that output has shape [3] for input with shape 1 x WIDTH x HEIGHT x FRAME_COUNT.

FULLY_CONNECTED_SIZE = (WIDTH / 8) * (HEIGHT / 8) * 32

   def createNetwork(self):
            conv_layer_1_biases = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[16]))
            conv_layer_1_weights = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[8,8,FRAME_COUNT,16]))
            input_layer = tf.placeholder("float", [None,WIDTH,HEIGHT,FRAME_COUNT])
            conv_layer_1 = tf.nn.relu(tf.nn.conv2d(input_layer, strides=[1,4,4,1], filter=conv_layer_1_weights, padding = 'SAME')  + conv_layer_1_biases)    
            conv_layer_2_biases = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[32]))
            conv_layer_2_weights = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[4, 4, 16, 32]))
            conv_layer_2 = tf.nn.relu(tf.nn.conv2d(conv_layer_1, strides=[1,2,2,1],filter=conv_layer_2_weights, padding = 'SAME') + conv_layer_2_biases)

            reshaped_layer = tf.reshape(conv_layer_2,[-1,FULLY_CONNECTED_SIZE])

            fully_connected_layer_weights = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[FULLY_CONNECTED_SIZE,256]))
            fully_connected_layer_biases = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[256]))

            fully_connected_layer = tf.nn.relu(tf.matmul(reshaped_layer,fully_connected_layer_weights) + fully_connected_layer_biases)

            output_layer_weights = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[256,NUMBER_OF_ACTIONS]))
            output_layer_biases = tf.Variable(tf.constant(np.random.uniform(-1,1), shape=[NUMBER_OF_ACTIONS]))

            output_layer = tf.matmul(fully_connected_layer,output_layer_weights) + output_layer_biases

            return input_layer, output_layer

And I train it like this:

            self.inputQ, self.outputQ = self.createNetwork()
            self._session = tf.Session()
            self._action = tf.placeholder("float", [None, NUMBER_OF_ACTIONS])
            self._target = tf.placeholder("float", [None])
            readout_action = tf.reduce_sum(tf.mul(self.outputQ, self._action), reduction_indices=1)

            cost = tf.reduce_mean(tf.square(self._target - readout_action))
            self._train_operation = tf.train.GradientDescentOptimizer(1e-4).minimize(cost)
            self._session.run(tf.initialize_all_variables())
            ... 
            self._session.run(self._train_operation,feed_dict={self._target:targets,self._action:actions,self.inputQ:before_states})

Before_states represent an N-array of FRAME_COUNT images as arrays with size WIDTH x HEIGHT where each element 1 or 0 : 1 mean white pixel and 0 - black pixel, so total shape is NxWIDTHxHEIGHTxFRAME_COUNT Also I have Q-function :

def Q(self, states):
        return self._session.run(self.outputQ, feed_dict={self.inputQ: states})

My problem:

At first time Q([state]) differs for each state where state is FRAME_COUNT images with size WIDTH x HEIGHT, so neural network with input 1xWIDTHxHEIGHTxFRAME_COUNT works as expected.

After first training, same value Q([state]) = Q1 for each possible state

After second training, same value Q([state]) = Q2 for each possible state.

After n-th training, same value Q([state]) = Qn for each possible state.

Why is that happening? Output of neural network should be different for each input state. What I should do in that situation? I tried different learnings rate, optimization methods (Descendent Gradient, Adam), initial weights.

0

There are 0 answers