I want to combine the 3th column and the 8th column to one column. There are two problems in my code. The original data is like this.
incidence<-read.csv("incidence.csv",head=F);incidence<-incidence[c(-1,-2),]
incidence[,3]
[1] 15266 1340 14842 7819 130516 8256 No Data No Data 1578 35914 27963
[12] 3419 2379 No Data 22153 9482 8931 10433 No Data 3401 No Data 14764
[23] 38551 9166 10448 19225 2071 5667 4934 2572 25518 5409 No Data
[34] 27011 2105 25539 5702 10365 40827 No Data 12829 1339 18739 40457
[45] 4505 1779 24387 No Data 7586 17666 1629 No Data
46 Levels: 10365 10433 10448 12829 130516 1339 1340 14764 14842 15266 1578 1629 17666 ... Number of New Cases
The original data is like:
incidence[,8]
[1] 18705 1693 15199 8774 160836 9393 No Data No Data 1578 48646 38417
[12] 4892 3241 No Data 23053 10599 6728 13365 No Data 3429 No Data 16927
[23] 45537 12103 10930 19225 1954 5001 5152 2123 28859 6165 No Data
[34] 32294 1928 46637 No Data 11689 48231 No Data 11979 0 23199 50551
[45] 5541 1917 20037 No Data 9400 20452 1752 No Data
45 Levels: 0 10599 10930 11689 11979 12103 13365 15199 1578 160836 16927 1693 1752 ... Number of New Cases
When I try to combine these data, I get the ranking of the original data and it seems that I get 2 rows instead 1 column at last. I do not know why.
rbind(incidence[,3],incidence[,8])
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] 10 7 9 40 5 41 45 45 11 30 27 29 21 45 20 44
[2,] 14 12 8 41 10 42 44 44 9 33 29 34 27 44 23 2
[,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31]
[1,] 42 2 45 28 45 8 31 43 3 16 18 37 35 25 23
[2,] 40 7 44 28 44 11 30 6 3 16 18 35 37 22 25
[,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46]
[1,] 36 45 26 19 24 38 1 33 45 4 6 15 32 34 14
[2,] 39 44 26 17 31 44 4 32 44 5 1 24 36 38 15
[,47] [,48] [,49] [,50] [,51] [,52]
[1,] 22 45 39 13 12 45
[2,] 20 44 43 21 13 44
Missing data in R are handled through the
NA
value. Since calling missing values NA is not universal,read.table
gives you the opportunity to specify how missing values are indicated through thena.strings
argument. Try reading the file with:In this way, the columns you are interested can be correctly parsed as
numeric
and you don't have problems with factor/character/numeric conversion afterwards.