I'm going to estimate some parameters of linear equation systems with repeated measures. My equations will look like this:
Variant1:
Variant2:
At least 10 values (repeated measures; technical replicates) are known for every and
. I want to estimate the values for
and
resp.
.
Additionally I'd like to know the standard error of these estimates, if possible.
In R, my data set would look like this (in reality I have :
i <- rep(1:3, each = 30)
j <- rep(rep(1:3, each = 10), 3)
K.i <- rep(c(6, 5, 10), each = 30) + rnorm(90)
K.ij <- K.i + rnorm(90)
# X_i, X_ij and x_ij should be 0 (since I assumed K_j being K_ij + normal noise
data <- cbind(i, j, K.i, K.ij)
How can I estimate the expected parameter values (minimizing the sums of squares) and the standard errors of these estimates in R?
Thanks a lot in advance for your help!