PyTorch: memorize output from several layers of sequencial

99 views Asked by At

I have a model in PyTorch and from one forward pass want to extract the outputs of several layers. Is that possible? e.g. the outputs of the first five convolutional layers of vgg

import torchvision
vgg = torchvision.models.vgg19_bn()
1

There are 1 answers

0
Oliver Wilken On

I think the easiest way is to define a new model in which all layers of interest are defined:

from torch import nn
import torchvision

class VGG(nn.Module):

    def __init__(self):

        super(VGG, self).__init__()

        vgg = torchvision.models.vgg19_bn()

        self.l_00 = list(vgg.features.children())[0]
        self.l_01 = list(vgg.features.children())[1]
        self.l_02 = list(vgg.features.children())[2]
        self.l_03 = list(vgg.features.children())[3]
        self.l_04 = list(vgg.features.children())[4]
        self.l_05 = list(vgg.features.children())[5]
        self.l_06 = list(vgg.features.children())[6]
        self.l_07 = list(vgg.features.children())[7]
        self.l_08 = list(vgg.features.children())[8]
        self.l_09 = list(vgg.features.children())[9]
        self.l_10 = list(vgg.features.children())[10]
        self.l_11 = list(vgg.features.children())[11]
        self.l_12 = list(vgg.features.children())[12]
        self.l_13 = list(vgg.features.children())[13]
        self.l_14 = list(vgg.features.children())[14]
        self.l_15 = list(vgg.features.children())[15]
        self.l_16 = list(vgg.features.children())[16]

    def forward(self, x):

        x  = self.l_00(x)
        x  = self.l_01(x)
        c1 = self.l_02(x)
        x  = self.l_03(x)
        x  = self.l_04(x)
        c2 = self.l_05(x)
        x  = self.l_06(c2)
        x  = self.l_07(x)
        x  = self.l_08(x)
        c3 = self.l_09(x)
        x  = self.l_10(c3)
        x  = self.l_11(x)
        c4 = self.l_12(x)
        x  = self.l_13(c4)
        x  = self.l_14(x)
        x  = self.l_15(x)
        c5  = self.l_16(x)

        return c1, c2, c3, c4, c5