For a list of words I want to get their fasttext vectors and save them to a file in the same "word2vec" .txt format (word+space+vector in txt format).
This is what I did:
dict = open("word_list.txt","r") #the list of words I have
path = "cc.en.300.bin"
model = load_facebook_model(path)
vectors = []
words =[]
for word in dict:
vectors.append(model[word])
words.append(word)
vectors_array = np.array(vectors)
*I want to take the list "words" and nd.array "vectors_array" and save in the original .txt format.
I try to use the function from gensim "_save_word2vec_format":
def _save_word2vec_format(fname, vocab, vectors, fvocab=None, binary=False, total_vec=None):
"""Store the input-hidden weight matrix in the same format used by the original
C word2vec-tool, for compatibility.
Parameters
----------
fname : str
The file path used to save the vectors in.
vocab : dict
The vocabulary of words.
vectors : numpy.array
The vectors to be stored.
fvocab : str, optional
File path used to save the vocabulary.
binary : bool, optional
If True, the data wil be saved in binary word2vec format, else it will be saved in plain text.
total_vec : int, optional
Explicitly specify total number of vectors
(in case word vectors are appended with document vectors afterwards).
"""
if not (vocab or vectors):
raise RuntimeError("no input")
if total_vec is None:
total_vec = len(vocab)
vector_size = vectors.shape[1]
if fvocab is not None:
logger.info("storing vocabulary in %s", fvocab)
with utils.open(fvocab, 'wb') as vout:
for word, vocab_ in sorted(iteritems(vocab), key=lambda item: -item[1].count):
vout.write(utils.to_utf8("%s %s\n" % (word, vocab_.count)))
logger.info("storing %sx%s projection weights into %s", total_vec, vector_size, fname)
assert (len(vocab), vector_size) == vectors.shape
with utils.open(fname, 'wb') as fout:
fout.write(utils.to_utf8("%s %s\n" % (total_vec, vector_size)))
# store in sorted order: most frequent words at the top
for word, vocab_ in sorted(iteritems(vocab), key=lambda item: -item[1].count):
row = vectors[vocab_.index]
if binary:
row = row.astype(REAL)
fout.write(utils.to_utf8(word) + b" " + row.tostring())
else:
fout.write(utils.to_utf8("%s %s\n" % (word, ' '.join(repr(val) for val in row))))
but I get the error:
INFO:gensim.models._fasttext_bin:loading 2000000 words for fastText model from cc.en.300.bin
INFO:gensim.models.word2vec:resetting layer weights
INFO:gensim.models.word2vec:Updating model with new vocabulary
INFO:gensim.models.word2vec:New added 2000000 unique words (50% of original 4000000) and increased the count of 2000000 pre-existing words (50% of original 4000000)
INFO:gensim.models.word2vec:deleting the raw counts dictionary of 2000000 items
INFO:gensim.models.word2vec:sample=1e-05 downsamples 6996 most-common words
INFO:gensim.models.word2vec:downsampling leaves estimated 390315457935 word corpus (70.7% of prior 552001338161)
INFO:gensim.models.fasttext:loaded (4000000, 300) weight matrix for fastText model from cc.en.300.bin
trials.py:42: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead).
vectors.append(model[word])
INFO:__main__:storing 8664x300 projection weights into arrays_to_txt_oct3.txt
loading the model for: en
finish loading the model for: en
len(vectors): 8664
len(words): 8664
shape of vectors_array (8664, 300)
mission launched!
Traceback (most recent call last):
File "trials.py", line 102, in <module>
_save_word2vec_format(YOUR_VEC_FILE_PATH, words, vectors_array, fvocab=None, binary=False, total_vec=None)
File "trials.py", line 89, in _save_word2vec_format
for word, vocab_ in sorted(iteritems(vocab), key=lambda item: -item[1].count):
File "/cs/snapless/oabend/tailin/transdiv/lib/python3.7/site-packages/six.py", line 589, in iteritems
return iter(d.items(**kw))
AttributeError: 'list' object has no attribute 'items'
I understand that it has to do with the second argument in the function, but I don't understand how should I make a list of words into a dictionary object?
I tried doing that with:
#convert list of words into a dictionary
words_dict = {i:x for i,x in enumerate(words)}
But still got the error message:
Traceback (most recent call last):
File "trials.py", line 99, in <module>
_save_word2vec_format(YOUR_VEC_FILE_PATH, dict, vectors_array, fvocab=None, binary=False, total_vec=None)
File "trials.py", line 77, in _save_word2vec_format
total_vec = len(vocab)
TypeError: object of type '_io.TextIOWrapper' has no len()
I don't understand how to insert the word list in the right format...
You can directly import & re-use the Gensim
KeyedVectors
class to assemble your own (sub)set of word-vectors as one instance ofKeyedVectors
, then use its.save_word2vec_format()
method.For example, roughly this should work: