I need to do precision timing to the 1 us level to time a change in duty cycle of a pwm wave.
Background
I am using a Gumstix Over Water COM (https://www.gumstix.com/store/app.php/products/265/) that has a single core ARM Cortex-A8 processor running at 499.92 BogoMIPS (the Gumstix page claims up to 1Ghz with 800Mhz recommended) according to /proc/cpuinfo. The OS is an Angstrom Image version of Linux based of kernel version 2.6.34 and it is stock on the Gumstix Water COM.
The Problem
I have done a fair amount of reading about precise timing in Linux (and have tried most of it) and the consensus seems to be that using clock_gettime() and referencing CLOCK_MONOTONIC is the best way to do it. (I would have liked to use the RDTSC register for timing since I have one core with minimal power saving abilities but this is not an Intel processor.) So here is the odd part, while clock_getres() returns 1, suggesting resolution at 1 ns, actual timing tests suggest a minimum resolution of 30517ns or (it can't be coincidence) exactly the time between a 32.768KHz clock ticks. Here's what I mean:
// Stackoverflow example
#include <stdio.h>
#include <time.h>
#define SEC2NANOSEC 1000000000
int main( int argc, const char* argv[] )
{
// //////////////// Min resolution test //////////////////////
struct timespec resStart, resEnd, ts;
ts.tv_sec = 0; // s
ts.tv_nsec = 1; // ns
int iters = 100;
double resTime,sum = 0;
int i;
for (i = 0; i<iters; i++)
{
clock_gettime(CLOCK_MONOTONIC, &resStart); // start timer
// clock_nanosleep(CLOCK_MONOTONIC, 0, &ts, &ts);
clock_gettime(CLOCK_MONOTONIC, &resEnd); // end timer
resTime = ((double)resEnd.tv_sec*SEC2NANOSEC + (double)resEnd.tv_nsec
- ((double)resStart.tv_sec*SEC2NANOSEC + (double)resStart.tv_nsec);
sum = sum + resTime;
printf("resTime = %f\n",resTime);
}
printf("Average = %f\n",sum/(double)iters);
}
(Don't fret over the double casting, tv_sec in a time_t and tv_nsec is a long.)
Compile with:
gcc soExample.c -o runSOExample -lrt
Run with:
./runSOExample
With the nanosleep commented out as shown, the result is either 0ns or 30517ns with the majority being 0ns. This leads me to believe that CLOCK_MONOTONIC is updated at 32.768kHz and most of the time the clock has not been updated before the second clock_gettime() call is made and in cases where the result is 30517ns the clock has been updated between calls.
When I do the same thing on my development computer (AMD FX(tm)-6100 Six-Core Processor running at 1.4 GHz) the minimum delay is a more constant 149-151ns with no zeros.
So, let's compare those results to the CPU speeds. For the Gumstix, that 30517ns (32.768kHz) equates to 15298 cycles of the 499.93MHz cpu. For my dev computer that 150ns equates to 210 cycles of the 1.4Ghz CPU.
With the clock_nanosleep() call uncommented the average results are these: Gumstix: Avg value = 213623 and the result varies, up and down, by multiples of that min resolution of 30517ns Dev computer: 57710-68065 ns with no clear trend. In the case of the dev computer I expect the resolution to actually be at the 1 ns level and the measured ~150ns truly is the time elapsed between the two clock_gettime() calls.
So, my question's are these: What determines that minimum resolution? Why is the resolution of the dev computer 30000X better than the Gumstix when the processor is only running ~2.6X faster? Is there a way to change how often CLOCK_MONOTONIC is updated and where? In the kernel?
Thanks! If you need more info or clarification just ask.
I do not have gumstix on hand, but it looks like your clocksource is slow. run:
$ dmesg | grep clocksource
If you get back
[ 0.560455] Switching to clocksource 32k_counter
This might explain why your clock is so slow.
In the recent kernels there is a directory
/sys/devices/system/clocksource/clocksource0
with two files:available_clocksource
andcurrent_clocksource
. If you have this directory, try switching to a different source by echo'ing its name into second file.