The only equation to calculate this that I can find involves t
in the range [0, 1], but I have no idea how long it will take to travel the entire path, so I can't calculate (1 - t)
.
I know the speed at which I'm traveling, but it seems to be a heavy idea to calculate the total time beforehand (nor do I actually know how to do that calculation). What is an equation to figure out the position without knowing the total time?
Edit To clarify on the cubic bezier curve: I have four control points (P0 to P1), and to get a value on the curve with t, I need to use the four points as such:
B(t) = (1-t)^3P0 + 3t(1-t)^2P1 + 3t^2(1-t)P2 + t^3P3
I am not using a parametric equation to define the curve. The control points are what define the curve. What I need is an equation that does not require the use of knowing the range of t
.
I think there is a misunderstanding here. The 't' in the cubic Bezier curve's definition does not refer to 'time'. It is parameter that the x, y or even z functions based on. Unlike the traditional way of representing y as a function of x, such as y=f(x), an alternative way of representing a curve is by the parametric form that represents x, y and z as functions of an additional parameter t, C(t)=(x(t), y(t), z(t)). Typically the t value will range from 0 to 1, but this is not a must. The common representation for a circle as x=cos(t) and y=sin(t) is an example of parametric representation. So, if you have the parametric representation of a curve, you can evaluate the position on the curve for any given t value. It has nothing to do with the time it takes to travel the entire path.