OpenAI and DialogFlow Integration

151 views Asked by At

I working on a project that involves connecting chatgpt OpenAI to an existing Dialogflow Chatbot. So I decided to create a demo before starting on research I encountered a way to do this with node.js. But the code does not quiet work yet it should I have tried but not sure. I mostly got the idea and code online. So i need help in knowing how the code could work for the demo if it is correct? what should I do better.

code:

    const dialogflow = require("@google-cloud/dialogflow");
const { WebhookClient, Payload } = require("dialogflow-fulfillment");
const express = require("express");
const twilio = require("twilio");
const axios = require("axios");

// Step 1: Create a client for handling Dialogflow sessions
const sessionClient = new dialogflow.SessionsClient();

// Step 2: Load the OpenAI configuration and API key from environment variables
const OpenAI = require("openai");
// import { Configuration, OpenAIApi } from "openai";

//step 2.1 Load environment variables
require("dotenv").config();

//OpenAI configuration
const openai = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
});

// Step 3: Initialize OpenAI API with the loaded configuration
// const openai = new OpenAI(configuration);

// Step 4: Define a function for text generation using OpenAI's GPT-3.5 Turbo model
const textGeneration = async (prompt) => {
  try {
    const response = await openai.chat.completions.create({
      model: "gpt-3.5-turbo",

      messages: [
        {
          role: "user",
          content: `Human: ${prompt}`, // You should provide a user message or prompt here.
        },
      ],
      temperature: 1, // Control the randomness of the output.
      max_tokens: 256, // Set the maximum length of the generated text.
      top_p: 1, // Control the probability of the generated tokens.
      frequency_penalty: 0, // Adjust the penalty for using frequent tokens.
      presence_penalty: 0, // Adjust the penalty for using new tokens.
    });
  } catch (error) {
    // Step 5: Handle any errors that may occur during API call
    return {
      status: 0, // Indicate failure status if there's an error
      response: "", // Provide an empty response in case of an error
    };
  }
};

//initialise express
const webApp = express();

const PORT = process.env.PORT || 5001;

webApp.use(
  express.urlencoded({
    extended: true,
  })
);

webApp.use(express.json());

webApp.use((req, res, next) => {
  console.log(`Path ${req.path} with Method ${req.method}`);
  next();
});

webApp.get("/", (req, res) => {
  res.sendStatus(200);
  res.send("Status Okay");
});

webApp.post("/dialogflow", async (req, res) => {
  let id = res.req.body.session.substr(43);
  console.log(id);
  const agent = new WebhookClient({
    request: req,
    response: res,
  });

  //The main section as this part handles the dialogflow standpoint
  async function fallback() {
    let action = req.body.queryResult.action;
    let queryText = req.body.queryResult.queryText;

    if (action === "input.unknown") {
      let result = await textGeneration(queryText);
      if (result.status === 1) {
        agent.add(result.response);
      } else {
        agent.add("Sorry, I am not able to help");
      }
    }
  }

  function hi(agent) {
    console.log("Intent => hi");
    agent.add("Hi, I am your virtual assistant. Tell me how can I help you");
  }

  let intentMap = new Map();
  intentMap.set("Default Welcome Intent", hi);
  intentMap.set("Default Fallback Intent", fallback);
  agent.handleRequest(intentMap);
});

webApp.listen(PORT, () => {
  console.log(`Server is up and running at http://localhost:${PORT}`);
});

0

There are 0 answers