In this paper, a very simple model is described to illustrate how the ant colony algorithm works. In short, it assumes two nodes which are connected via two links one of which is shorter. Then, given a pheromone increment and a pheromone evaporation dynamics, one expects that all ants eventually pick the shorter path.
Now, I'm trying to replicate the simulation of this paper corresponding to scenario above whose result should be (more or less) like below.
Here is an implementation of mine (taking the same specification as that of the test above).
import random
import matplotlib.pyplot as plt
N = 10
l1 = 1
l2 = 2
ru = 0.5
Q = 1
tau1 = 0.5
tau2 = 0.5
epochs = 150
success = [0 for x in range(epochs)]
def compute_probability(tau1, tau2):
return tau1/(tau1 + tau2), tau2/(tau1 + tau2)
def select_path(prob1, prob2):
if prob1 > prob2:
return 1
if prob1 < prob2:
return 2
if prob1 == prob2:
return random.choice([1,2])
def update_accumulation(link_id):
global tau1
global tau2
if link_id == 1:
tau1 += Q / l1
return tau1
if link_id == 2:
tau2 += Q / l2
return tau2
def update_evapuration():
global tau1
global tau2
tau1 *= (1-ru)
tau2 *= (1-ru)
return tau1, tau2
def report_results(success):
plt.plot(success)
plt.show()
for epoch in range(epochs-1):
temp = 0
for ant in range(N-1):
prob1, prob2 = compute_probability(tau1, tau2)
selected_path = select_path(prob1,prob2)
if selected_path == 1:
temp += 1
update_accumulation(selected_path)
update_evapuration()
success[epoch] = temp
report_results(success)
However, what I get is fairly weird as below.
It seems that my understanding of how pheromone should be updated is flawed.
So, can one address what I am missing in this implementation?
Three problems in the proposed approach:
As @Mark mentioned in his comment, you need a weighted random choice. Otherwise the proposed approach will likely always pick one of the paths and the plot will result in a straight line as you show above. However, I think this was part of the solution, because even with this, you will likely still get a straight line because of early convergence, which led two problem two.
Ant Colony Optimization is a metaheuristic that needs several (hyper) parameters configured to guide the search for a certain solution (e.g., tau from above or number of ants). Fine tuning this parameters is important because you can converge early on a particular result (which is fine to some extent - if you want to use it as an heuristic). But the purpose of a metaheuristic is to provide you with some middle ground between the exact and heuristic algorithms, which makes the continous exploration/exploitation an important part of its workings. This means the parameters need to be careful optimised for your problem size/type.
Given that the ACO uses a probabilistic approach for guiding the search (and as the plot from the referenced paper is showing), you will need to run the experiment several times and compute some statistic on those numbers. In my case below, I computed the average over 100 samples.
The code above should return something close to the desired plot.