Hell, Im running a simple regression.My network configuration is as below
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(1)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(learningRate)
.updater(Updater.NESTEROVS)
.weightInit(WeightInit.XAVIER)
.list()
.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
.activation(Activation.RELU)
.build())
.layer(1, new DenseLayer.Builder().nIn(numHiddenNodes).nOut(numHiddenNodes)
.activation(Activation.RELU)
.build())
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MSE)
.activation(Activation.RELU)
.nIn(numHiddenNodes).nOut(numOutputs).build())
.pretrain(false).backprop(true).build();
Im getting the following error
Exception in thread "main" java.lang.IllegalArgumentException: occurrences cannot be negative: -992 at com.google.common.base.Preconditions.checkArgument(Preconditions.java:145) at com.google.common.collect.AbstractMapBasedMultiset.add(AbstractMapBasedMultiset.java:218) at com.google.common.collect.HashMultiset.add(HashMultiset.java:34)
This is a practice code. I get this error when I try to evaluate the model. The model training itself runs fine but fails in evaluation.Any idea.
I did not noramalize the lables earlier preProcessor.fitLabel(true) in my preprocessor to normalize the labels as well along with the inputs.