I have a vector and wish to make another vector of the same length whose k-th component is
The question is: how can we vectorize this for speed? NumPy vectorize() is actually a for loop, so it doesn't count.
Veedrac pointed out that "There is no way to apply a pure Python function to every element of a NumPy array without calling it that many times". Since I'm using NumPy functions rather than "pure Python" ones, I suppose it's possible to vectorize, but I don't know how.
import numpy as np
from scipy.integrate import quad
ws = 2 * np.random.random(10) - 1
n = len(ws)
integrals = np.empty(n)
def f(x, w):
if w < 0: return np.abs(x * w)
else: return np.exp(x) * w
def temp(x): return np.array([f(x, w) for w in ws]).sum()
def integrand(x, w): return f(x, w) * np.log(temp(x))
## Python for loop
for k in range(n):
integrals[k] = quad(integrand, -1, 1, args = ws[k])[0]
## NumPy vectorize
integrals = np.vectorize(quad)(integrand, -1, 1, args = ws)[0]
On a side note, is a Cython for loop always faster than NumPy vectorization?
The function
quad
executes an adaptive algorithm, which means the computations it performs depend on the specific thing being integrated. This cannot be vectorized in principle.In your case, a
for
loop of length 10 is a non-issue. If the program takes long, it's because integration takes long, not because you have afor
loop.When you absolutely need to vectorize integration (not in the example above), use a non-adaptive method, with the understanding that precision may suffer. These can be directly applied to a 2D NumPy array obtained by evaluating all of your functions on some regularly spaced 1D array (a
linspace
). You'll have to choose the linspace yourself since the methods aren't adaptive.2**n+1
for some integern
.