in traditional gbm, we can use predict.gbm(model, newsdata=..., n.tree=...)
So that I can compare result with different number of trees for the test data.
In h2o.gbm, although it has n.tree to set, it seems it doesn't have any effect on the result. It's all the same as the default model:
h2o.test.pred <- as.vector(h2o.predict(h2o.gbm.model, newdata=test.frame, n.tree=100))
R2(h2o.test.pred, test.mat$y)
[1] -0.00714109
h2o.test.pred <- as.vector(h2o.predict(h2o.gbm.model, newdata=test.frame, n.tree=10))
> R2(h2o.test.pred, test.mat$y)
[1] -0.00714109
Does anybod have similar problem? How to solve it? h2o.gbm is much faster than gbm, so if it can get detailed result of each tree that would be great.
I don't think H2O supports what you are describing.
BUT, if what you are after is to get the performance against the number of trees used, that can be done at model building time.
The score history will show the evaluation after adding each new tree.
plot(m)
will show a chart of this. Looks like 20 is plenty for iris!BTW, if your real purpose was to find out the optimum number of trees to use, then switch early stopping on, and it will do that automatically for you. (Just make sure you are using both validation and test data frames.)