I tried to use DBN function imported from nolearn package, and here is my code:
from nolearn.dbn import DBN
import numpy as np
from sklearn import cross_validation
fileName = 'data.csv'
fileName_1 = 'label.csv'
data = np.genfromtxt(fileName, dtype=float, delimiter = ',')
label = np.genfromtxt(fileName_1, dtype=int, delimiter = ',')
clf = DBN(
[data, 300, 10],
learn_rates=0.3,
learn_rate_decays=0.9,
epochs=10,
verbose=1,
)
clf.fit(data,label)
score = cross_validation.cross_val_score(clf, data, label,scoring='f1', cv=10)
print score
Since my data has the shape(1231, 229) and label with the shape(1231,13), the label sets looks like ([0 0 1 0 1 0 1 0 0 0 1 1 0] ...,[....]), when I ran my code, I got the this error message: bad input shape (1231,13). I wonder two problem might happened here:
- DBN does not support multi-label classification
- my label is not suitable to be used in DBN fit function.
As mentioned by Francisco Vargas,
nolearn.dbn
is deprecated and you should usenolearn.lasagne
instead (if you can).If you want to do multi-label classification in lasagne, then you should set your
regression
parameter toTrue
, define a validation score and a custom loss.Here's an example: