I am trying to match our company names to a government's database of company names using cosine similarity via the awesome_cossim_top. So, I convert my ngrams tf-idf into a CSR matrix and run it through the function. It does not run and restarts my kernels on every IDE (Colab, Spyder, PyCharm and Jupyter). It simply is not working. I want to understand why?
import re
from ftfy import fix_text
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
import difflib
import numpy as np
from sparse_dot_topn import awesome_cossim_topn
from scipy.sparse import csr_matrix
import sparse_dot_topn.sparse_dot_topn as ct
def ngrams(string, n=3):
string = fix_text(string) # fix text encoding issues
string = string.encode("ascii", errors="ignore").decode() #remove non ascii chars
string = string.lower() #make lower case
chars_to_remove = [")","(",".","|","[","]","{","}","'"]
rx = '[' + re.escape(''.join(chars_to_remove)) + ']'
string = re.sub(rx, '', string) #remove the list of chars defined above
string = string.replace('&', 'and')
string = string.replace(',', ' ')
string = string.replace('-', ' ')
string = string.title() # normalise case - capital at start of each word
string = re.sub(' +',' ',string).strip() # get rid of multiple spaces and replace with a single space
string = ' '+ string +' ' # pad names for ngrams...
string = re.sub(r'[,-./]|\sBD',r'', string)
ngrams = zip(*[string[i:] for i in range(n)])
return [''.join(ngram) for ngram in ngrams]
def awesome_cossim_top(A, B, ntop, lower_bound=0):
# force A and B as a CSR matrix.
# If they have already been CSR, there is no overhead
A = A.tocsr()
B = B.tocsr()
M, _ = A.shape
_, N = B.shape
idx_dtype = np.int32
nnz_max = M * ntop
indptr = np.zeros(M + 1, dtype=idx_dtype)
indices = np.zeros(nnz_max, dtype=idx_dtype)
data = np.zeros(nnz_max, dtype=A.dtype)
ct.sparse_dot_topn(
M, N, np.asarray(A.indptr, dtype=idx_dtype),
np.asarray(A.indices, dtype=idx_dtype),
A.data,
np.asarray(B.indptr, dtype=idx_dtype),
np.asarray(B.indices, dtype=idx_dtype),
B.data,
ntop,
lower_bound,
indptr, indices, data)
return csr_matrix((data, indices, indptr), shape=(M, N))
def get_matches_df(sparse_matrix, A, B, top=100):
non_zeros = sparse_matrix.nonzero()
sparserows = non_zeros[0]
sparsecols = non_zeros[1]
if top:
nr_matches = top
else:
nr_matches = sparsecols.size
left_side = np.empty([nr_matches], dtype=object)
right_side = np.empty([nr_matches], dtype=object)
similairity = np.zeros(nr_matches)
for index in range(0, nr_matches):
left_side[index] = A[sparserows[index]]
right_side[index] = B[sparsecols[index]]
similairity[index] = sparse_matrix.data[index]
return pd.DataFrame({'left_side': left_side,
'right_side': right_side,
'similairity': similairity})
govdata = pd.read_csv('companydata2018.csv', encoding='utf-8')
hypxdata = pd.read_csv('enerygycomp.csv', encoding='cp1252')
#X = gov Y = hypx
vectoriser = TfidfVectorizer(analyzer=ngrams)
tfidfgov = vectoriser.fit_transform(govdata['CompanyName'])
tfidfhypx = vectoriser.fit_transform(hypxdata['Name'])
matches = awesome_cossim_top(tfidfgov, tfidfhypx.transpose(), 1, 0)```
I guess you are running out of memory. Have you tried with a smaller dataset?
Also, I think you should do the fit and transformation steps separately: fit the vectorizer with both series (for example concatenating them) and after that obtain the tfidf matrix for both datasets with transform.