My Neural Network isn't learning the right answers

210 views Asked by At

Firstly, I'm a complete amateur so I may mix up some terminology.

I've been working on a Neural Network to play Connect 4 / Four In A Row.

The current design of the network model is 170 input values, 417 hidden neurons and 1 output neuron. The network is fully connected, i.e. every input is connected to every hidden neuron and every hidden neuron is connected to the output node.

Every connection has an independent weight, and every hidden node, and the single output node, have an additional bias node with a weight.

The input representation of 170 values for the game-state of Connect 4 is:

  • 42 pairs of values (84 input variables) which denote whether a space is occupied by player 1, player 2 or is vacant.
    • 0,0 means it's free
    • 1,0 means it's player 1's position
    • 0,1 means it's player 2's position
    • 1,1 is not possible
  • Another 42 pairs of values (84 input variables) which denote whether adding a piece here will give player 1 or player 2 a "Connect 4"/"Four In a Row". The combination of values means the same as above.
  • 2 final input variables to denote who's turn it is:
    • 1,0 player 1's turn
    • 0,1 player 2's turn
    • 1,1 and 0,0 are not possible

I measured the average Mean Square Error of 100 games over 10,000 total games of various configurations to arrive at:

  • 417 hidden neurons
  • Alpha and Beta learning rate of 0.1 at the start and dropping to 0.01 linearly across the total number of epochs
  • A lambda value of 0.5
  • 90 out of 100 moves are random at the start and drop down to 10 out of every 100 after the first 50% of epochs. So at the midway point 10 out of 100 moves are random
  • The first 50% of epochs start with a random move
  • Sigmoid Activation Function used in every node

This image shows the results of the various configurations plotted with a logarithmic scale. This is how I determined which configuration to use.

enter image description here

I calculate this Mean Square Error by comparing the output of a board in a win-state against either -1 for a player 2 win and 1 for a player 1 win. I add these up every 100 games and divide the total by 100 to get 1000 values to plot in the above graph. I.e. the code snippet is:

if(board.InARowConnected(4) == Board<7,6,4>::Player1)
{
    totalLoss += NN->BackPropagateFinal({1},previousNN,alpha,beta,lambda);
    winState = true;
}
else if(board.InARowConnected(4) == Board<7,6,4>::Player2)
{
    totalLoss += NN->BackPropagateFinal({-1},previousNN,alpha,beta,lambda);
    winState = true;
}
else if(!board.IsThereAvailableMove())
{
    totalLoss += NN->BackPropagateFinal({0},previousNN,alpha,beta,lambda);
    winState = true;
}

...

if(gameNumber % 100 == 0 && gameNumber != 0)
{
    totalLoss = totalLoss / gamesToOutput;
    matchFile << std::fixed << std::setprecision(51) << totalLoss << std::endl;
    totalLoss = 0.0;
}

The way I'm training the network is by having it play against itself over and over again. It's a feed-forward network and I'm using TD-Lambda to train it for every move (every move that wasn't randomly chosen).

The Board State that is given to the Neural Network is done through this:

template<std::size_t BoardWidth, std::size_t BoardHeight, std::size_t InARow>
void create_board_state(std::array<double,BoardWidth*BoardHeight*4+2>& gameState, const Board<BoardWidth,BoardHeight,InARow>& board,
                        const typename Board<BoardWidth,BoardHeight,InARow>::Player player)
{
    using BoardType = Board<BoardWidth,BoardHeight,InARow>;
    auto bb = board.GetBoard();
    std::size_t stateIndex = 0;
    for(std::size_t boardIndex = 0; boardIndex < BoardWidth*BoardHeight; ++boardIndex, stateIndex += 2)
    {
        if(bb[boardIndex] == BoardType::Free)
        {
            gameState[stateIndex] = 0;
            gameState[stateIndex+1] = 0;
        }
        else if(bb[boardIndex] == BoardType::Player1)
        {
            gameState[stateIndex] = 1;
            gameState[stateIndex+1] = 0;
        }
        else
        {
            gameState[stateIndex] = 0;
            gameState[stateIndex+1] = 1;
        }
    }

    for(std::size_t x = 0; x < BoardWidth; ++x)
    {
        for(std::size_t y = 0; y < BoardHeight; ++y)
        {
            auto testBoard1 = board;
            auto testBoard2 = board;
            testBoard1.SetBoardChecker(x,y,Board<BoardWidth,BoardHeight,InARow>::Player1);
            testBoard2.SetBoardChecker(x,y,Board<BoardWidth,BoardHeight,InARow>::Player2);
            // player 1's set
            if(testBoard1.InARowConnected(4) == Board<7,6,4>::Player1)
                gameState[stateIndex] = 1;
            else
                gameState[stateIndex] = 0;
            // player 2's set
            if(testBoard2.InARowConnected(4) == Board<7,6,4>::Player2)
                gameState[stateIndex+1] = 1;
            else
                gameState[stateIndex+1] = 0;

            stateIndex += 2;
        }
    }

    if(player == Board<BoardWidth,BoardHeight,InARow>::Player1)
    {
        gameState[stateIndex] = 1;
        gameState[stateIndex+1] = 0;
    }
    else
    {
        gameState[stateIndex] = 0;
        gameState[stateIndex+1] = 1;
    }
}

It's templated to make changing things later easier. I don't believe there's anything wrong in the above.

My Sigmoid activation function:

inline double sigmoid(const double x)
{
    //  return 1.0 / (1.0 + std::exp(-x));
    return x / (1.0 + std::abs(x));
}

My Neuron Class

template<std::size_t NumInputs>
class Neuron
{
public:
    Neuron()
    {
        for(auto& i : m_inputValues)
            i = 9;
        for(auto& e : m_eligibilityTraces)
            e = 9;
        for(auto& w : m_weights)
            w = 9;
        m_biasWeight = 9;
        m_biasEligibilityTrace = 9;
        m_outputValue = 9;
    }

    void SetInputValue(const std::size_t index, const double value)
    {
        m_inputValues[index] = value;
    }

    void SetWeight(const std::size_t index, const double weight)
    {
        if(std::isnan(weight))
            throw std::runtime_error("Shit! this is a nan bread");
        m_weights[index] = weight;
    }

    void SetBiasWeight(const double weight)
    {
        m_biasWeight = weight;
    }

    double GetInputValue(const std::size_t index) const
    {
        return m_inputValues[index];
    }

    double GetWeight(const std::size_t index) const
    {
        return m_weights[index];
    }

    double GetBiasWeight() const
    {
        return m_biasWeight;
    }

    double CalculateOutput()
    {
        m_outputValue = 0;
        for(std::size_t i = 0; i < NumInputs; ++i)
        {
            m_outputValue += m_inputValues[i] * m_weights[i];
        }
        m_outputValue += 1.0 * m_biasWeight;
        m_outputValue = sigmoid(m_outputValue);
        return m_outputValue;
    }

    double GetOutput() const
    {
        return m_outputValue;
    }

    double GetEligibilityTrace(const std::size_t index) const
    {
        return m_eligibilityTraces[index];
    }

    void SetEligibilityTrace(const std::size_t index, const double eligibility)
    {
        m_eligibilityTraces[index] = eligibility;
    }

    void SetBiasEligibility(const double eligibility)
    {
        m_biasEligibilityTrace = eligibility;
    }

    double GetBiasEligibility() const
    {
        return m_biasEligibilityTrace;
    }

    void ResetEligibilityTraces()
    {
        for(auto& e : m_eligibilityTraces)
            e = 0;
        m_biasEligibilityTrace = 0;
    }

private:
    std::array<double,NumInputs> m_inputValues;
    std::array<double,NumInputs> m_weights;
    std::array<double,NumInputs> m_eligibilityTraces;
    double m_biasWeight;
    double m_biasEligibilityTrace;
    double m_outputValue;
};

My Neural Network class

template class NeuralNetwork { public:

void RandomiseWeights()
{
    double inputToHiddenRange = 4.0 * std::sqrt(6.0 / (NumInputs+1+NumOutputs));
    RandomGenerator inputToHidden(-inputToHiddenRange,inputToHiddenRange);

    double hiddenToOutputRange = 4.0 * std::sqrt(6.0 / (NumHidden+1+1));
    RandomGenerator hiddenToOutput(-hiddenToOutputRange,hiddenToOutputRange);

    for(auto& hiddenNeuron : m_hiddenNeurons)
    {
        for(std::size_t i = 0; i < NumInputs; ++i)
            hiddenNeuron.SetWeight(i, inputToHidden());
        hiddenNeuron.SetBiasWeight(inputToHidden());
    }

    for(auto& outputNeuron : m_outputNeurons)
    {
        for(std::size_t h = 0; h < NumHidden; ++h)
            outputNeuron.SetWeight(h, hiddenToOutput());
        outputNeuron.SetBiasWeight(hiddenToOutput());
    }
}

double GetOutput(const std::size_t index) const
{
    return m_outputNeurons[index].GetOutput();
}

std::array<double,NumOutputs> GetOutputs()
{
    std::array<double, NumOutputs> returnValue;
    for(std::size_t o = 0; o < NumOutputs; ++o)
        returnValue[o] = m_outputNeurons[o].GetOutput();
    return returnValue;
}

void SetInputValue(const std::size_t index, const double value)
{
    for(auto& hiddenNeuron : m_hiddenNeurons)
        hiddenNeuron.SetInputValue(index, value);
}

std::array<double,NumOutputs> Calculate()
{
    for(auto& h : m_hiddenNeurons)
        h.CalculateOutput();
    for(auto& o : m_outputNeurons)
        o.CalculateOutput();

    return GetOutputs();
}

std::array<double,NumOutputs> FeedForward(const std::array<double,NumInputs>& inputValues)
{
    for(std::size_t h = 0; h < NumHidden; ++h)//auto& hiddenNeuron : m_hiddenNeurons)
    {
        for(std::size_t i = 0; i < NumInputs; ++i)
            m_hiddenNeurons[h].SetInputValue(i,inputValues[i]);

        m_hiddenNeurons[h].CalculateOutput();
    }

    std::array<double, NumOutputs> returnValue;

    for(std::size_t h = 0; h < NumHidden; ++h)
    {
        auto hiddenOutput = m_hiddenNeurons[h].GetOutput();
        for(std::size_t o = 0; o < NumOutputs; ++o)
            m_outputNeurons[o].SetInputValue(h, hiddenOutput);
    }

    for(std::size_t o = 0; o < NumOutputs; ++o)
    {
        returnValue[o] = m_outputNeurons[o].CalculateOutput();
    }

    return returnValue;
}

double BackPropagateFinal(const std::array<double,NumOutputs>& actualValues, const NeuralNetwork<NumInputs,NumHidden,NumOutputs>* NN, const double alpha, const double beta, const double lambda)
{
    for(std::size_t iO = 0; iO < NumOutputs; ++iO)
    {
        auto y = NN->m_outputNeurons[iO].GetOutput();
        auto y1 = actualValues[iO];

        for(std::size_t iH = 0; iH < NumHidden; ++iH)
        {
            auto e = NN->m_outputNeurons[iO].GetEligibilityTrace(iH);
            auto h = NN->m_hiddenNeurons[iH].GetOutput();
            auto w = NN->m_outputNeurons[iO].GetWeight(iH);

            double e1 = lambda * e + (y * (1.0 - y) * h);

            double w1 = w + beta * (y1 - y) * e1;

            m_outputNeurons[iO].SetEligibilityTrace(iH,e1);
            m_outputNeurons[iO].SetWeight(iH,w1);
        }

        auto e = NN->m_outputNeurons[iO].GetBiasEligibility();
        auto h = 1.0;
        auto w = NN->m_outputNeurons[iO].GetBiasWeight();

        double e1 = lambda * e + (y * (1.0 - y) * h);

        double w1 = w + beta * (y1 - y) * e1;

        m_outputNeurons[iO].SetBiasEligibility(e1);
        m_outputNeurons[iO].SetBiasWeight(w1);
    }

    for(std::size_t iH = 0; iH < NumHidden; ++iH)
    {
        auto h = NN->m_hiddenNeurons[iH].GetOutput();

        for(std::size_t iI = 0; iI < NumInputs; ++iI)
        {
            auto e = NN->m_hiddenNeurons[iH].GetEligibilityTrace(iI);
            auto x = NN->m_hiddenNeurons[iH].GetInputValue(iI);
            auto u = NN->m_hiddenNeurons[iH].GetWeight(iI);

            double sumError = 0;

            for(std::size_t iO = 0; iO < NumOutputs; ++iO)
            {
                auto w = NN->m_outputNeurons[iO].GetWeight(iH);
                auto y = NN->m_outputNeurons[iO].GetOutput();
                auto y1 = actualValues[iO];

                auto grad = y1 - y;

                double e1 = lambda * e + (y * (1.0 - y) * w * h * (1.0 - h) * x);

                sumError += grad * e1;
            }

            double u1 = u + alpha * sumError;

            m_hiddenNeurons[iH].SetEligibilityTrace(iI,sumError);
            m_hiddenNeurons[iH].SetWeight(iI,u1);
        }

        auto e = NN->m_hiddenNeurons[iH].GetBiasEligibility();
        auto x = 1.0;
        auto u = NN->m_hiddenNeurons[iH].GetBiasWeight();

        double sumError = 0;

        for(std::size_t iO = 0; iO < NumOutputs; ++iO)
        {
            auto w = NN->m_outputNeurons[iO].GetWeight(iH);
            auto y = NN->m_outputNeurons[iO].GetOutput();
            auto y1 = actualValues[iO];

            auto grad = y1 - y;

            double e1 = lambda * e + (y * (1.0 - y) * w * h * (1.0 - h) * x);

            sumError += grad * e1;
        }

        double u1 = u + alpha * sumError;

        m_hiddenNeurons[iH].SetBiasEligibility(sumError);
        m_hiddenNeurons[iH].SetBiasWeight(u1);
    }

    double retVal = 0;
    for(std::size_t o = 0; o < NumOutputs; ++o)
    {
        retVal += 0.5 * alpha * std::pow((NN->GetOutput(o) - GetOutput(0)),2);
    }
    return retVal / NumOutputs;
}

double BackPropagate(const NeuralNetwork<NumInputs,NumHidden,NumOutputs>* NN, const double alpha, const double beta, const double lambda)
{
    for(std::size_t iO = 0; iO < NumOutputs; ++iO)
    {
        auto y = NN->m_outputNeurons[iO].GetOutput();
        auto y1 = m_outputNeurons[iO].GetOutput();

        for(std::size_t iH = 0; iH < NumHidden; ++iH)
        {
            auto e = NN->m_outputNeurons[iO].GetEligibilityTrace(iH);
            auto h = NN->m_hiddenNeurons[iH].GetOutput();
            auto w = NN->m_outputNeurons[iO].GetWeight(iH);

            double e1 = lambda * e + (y * (1.0 - y) * h);

            double w1 = w + beta * (y1 - y) * e1;

            m_outputNeurons[iO].SetEligibilityTrace(iH,e1);

            m_outputNeurons[iO].SetWeight(iH,w1);
        }

        auto e = NN->m_outputNeurons[iO].GetBiasEligibility();
        auto h = 1.0;
        auto w = NN->m_outputNeurons[iO].GetBiasWeight();

        double e1 = lambda * e + (y * (1.0 - y) * h);

        double w1 = w + beta * (y1 - y) * e1;

        m_outputNeurons[iO].SetBiasEligibility(e1);
        m_outputNeurons[iO].SetBiasWeight(w1);
    }

    for(std::size_t iH = 0; iH < NumHidden; ++iH)
    {
        auto h = NN->m_hiddenNeurons[iH].GetOutput();

        for(std::size_t iI = 0; iI < NumInputs; ++iI)
        {
            auto e = NN->m_hiddenNeurons[iH].GetEligibilityTrace(iI);
            auto x = NN->m_hiddenNeurons[iH].GetInputValue(iI);
            auto u = NN->m_hiddenNeurons[iH].GetWeight(iI);

            double sumError = 0;

            for(std::size_t iO = 0; iO < NumOutputs; ++iO)
            {
                auto w = NN->m_outputNeurons[iO].GetWeight(iH);
                auto y = NN->m_outputNeurons[iO].GetOutput();
                auto y1 = m_outputNeurons[iO].GetOutput();

                auto grad = y1 - y;

                double e1 = lambda * e + (y * (1.0 - y) * w * h * (1.0 - h) * x);

                sumError += grad * e1;
            }

            double u1 = u + alpha * sumError;

            m_hiddenNeurons[iH].SetEligibilityTrace(iI,sumError);

            m_hiddenNeurons[iH].SetWeight(iI,u1);
        }

        auto e = NN->m_hiddenNeurons[iH].GetBiasEligibility();
        auto x = 1.0;
        auto u = NN->m_hiddenNeurons[iH].GetBiasWeight();

        double sumError = 0;

        for(std::size_t iO = 0; iO < NumOutputs; ++iO)
        {
            auto w = NN->m_outputNeurons[iO].GetWeight(iH);
            auto y = NN->m_outputNeurons[iO].GetOutput();
            auto y1 = m_outputNeurons[iO].GetOutput();

            auto grad = y1 - y;

            double e1 = lambda * e + (y * (1.0 - y) * w * h * (1.0 - h) * x);

            sumError += grad * e1;
        }

        double u1 = u + alpha * sumError;

        m_hiddenNeurons[iH].SetBiasEligibility(sumError);
        m_hiddenNeurons[iH].SetBiasWeight(u1);
    }

    double retVal = 0;
    for(std::size_t o = 0; o < NumOutputs; ++o)
    {
        retVal += 0.5 * alpha * std::pow((NN->GetOutput(o) - GetOutput(0)),2);
    }
    return retVal / NumOutputs;
}

std::array<double,NumInputs*NumHidden+NumHidden+NumHidden*NumOutputs+NumOutputs> GetNetworkWeights() const
{
    std::array<double,NumInputs*NumHidden+NumHidden+NumHidden*NumOutputs+NumOutputs> returnVal;

    std::size_t weightPos = 0;

    for(std::size_t h = 0; h < NumHidden; ++h)
    {
        for(std::size_t i = 0; i < NumInputs; ++i)
            returnVal[weightPos++] = m_hiddenNeurons[h].GetWeight(i);
        returnVal[weightPos++] = m_hiddenNeurons[h].GetBiasWeight();
    }
    for(std::size_t o = 0; o < NumOutputs; ++o)
    {
        for(std::size_t h = 0; h < NumHidden; ++h)
            returnVal[weightPos++] = m_outputNeurons[o].GetWeight(h);
        returnVal[weightPos++] = m_outputNeurons[o].GetBiasWeight();
    }

    return returnVal;
}

static constexpr std::size_t NumWeights = NumInputs*NumHidden+NumHidden+NumHidden*NumOutputs+NumOutputs;


void SetNetworkWeights(const std::array<double,NumInputs*NumHidden+NumHidden+NumHidden*NumOutputs+NumOutputs>& weights)
{
    std::size_t weightPos = 0;
    for(std::size_t h = 0; h < NumHidden; ++h)
    {
        for(std::size_t i = 0; i < NumInputs; ++i)
            m_hiddenNeurons[h].SetWeight(i, weights[weightPos++]);
        m_hiddenNeurons[h].SetBiasWeight(weights[weightPos++]);
    }
    for(std::size_t o = 0; o < NumOutputs; ++o)
    {
        for(std::size_t h = 0; h < NumHidden; ++h)
            m_outputNeurons[o].SetWeight(h, weights[weightPos++]);
        m_outputNeurons[o].SetBiasWeight(weights[weightPos++]);
    }
}

void ResetEligibilityTraces()
{
    for(auto& h : m_hiddenNeurons)
        h.ResetEligibilityTraces();
    for(auto& o : m_outputNeurons)
        o.ResetEligibilityTraces();
}

private:

std::array<Neuron<NumInputs>,NumHidden> m_hiddenNeurons;
std::array<Neuron<NumHidden>,NumOutputs> m_outputNeurons;
};

I believe one of the places I may have an issue is the BackPropagate and BackPropagateFinal methods in the Neural Network class.

Here's my main function that is training the network:

int main()
{
    std::ofstream matchFile("match.txt");

    RandomGenerator randomPlayerStart(0,1);
    RandomGenerator randomMove(0,100);

    Board<7,6,4> board;

    auto NN = new NeuralNetwork<7*6*4+2,417,1>();
    auto previousNN = new NeuralNetwork<7*6*4+2,417,1>();
    NN->RandomiseWeights();

    const int numGames = 3000000;
    double alpha = 0.1;
    double beta = 0.1;
    double lambda = 0.5;
    double learningRateFloor = 0.01;
    double decayRateAlpha = (alpha - learningRateFloor) / numGames;
    double decayRateBeta = (beta - learningRateFloor) / numGames;
    double randomChance = 90; // out of 100
    double randomChangeFloor = 10;
    double percentToReduceRandomOver = 0.5;
    double randomChangeDecay = (randomChance-randomChangeFloor) / (numGames*percentToReduceRandomOver);
    double percentOfGamesToRandomiseStart = 0.5;

    int numGamesWonP1 = 0;
    int numGamesWonP2 = 0;

    int gamesToOutput = 100;

    matchFile << "Num Games: " << numGames << "\t\ta,b,l: " << alpha << ", " << beta << ", " << lambda << std::endl;

    Board<7,6,4>::Player playerStart = randomPlayerStart() > 0.5 ? Board<7,6,4>::Player1 : Board<7,6,4>::Player2;

    double totalLoss = 0.0;

    for(int gameNumber = 0; gameNumber < numGames; ++gameNumber)
    {
        bool winState = false;
        Board<7,6,4>::Player playerWhoTurnItIs = playerStart;
        playerStart = playerStart == Board<7,6,4>::Player1 ? Board<7,6,4>::Player2 : Board<7,6,4>::Player1;
        board.ClearBoard();

        int turnNumber = 0;

        while(!winState)
        {
            Board<7,6,4>::Player playerWhoTurnItIsNot = playerWhoTurnItIs == Board<7,6,4>::Player1 ? Board<7,6,4>::Player2 : Board<7,6,4>::Player1;

            bool wasRandomMove = false;

            std::size_t selectedMove;
            bool moveFound = false;

            if(board.IsThereAvailableMove())
            {
                std::vector<std::size_t> availableMoves;
                if((gameNumber <= numGames * percentOfGamesToRandomiseStart && turnNumber == 0) || randomMove() > 100.0-randomChance)
                    wasRandomMove = true;

                std::size_t bestMove = 8;
                double bestWorstResponse = playerWhoTurnItIs == Board<7,6,4>::Player1 ? std::numeric_limits<double>::min() : std::numeric_limits<double>::max();

                for(std::size_t m = 0; m < 7; ++m)
                {
                    Board<7,6,4> testBoard = board;    // make a copy of the current board to run our tests
                    if(testBoard.AvailableMoveInColumn(m))
                    {
                        if(wasRandomMove)
                        {
                            availableMoves.push_back(m);
                        }
                        testBoard.AddChecker(m, playerWhoTurnItIs);

                        double worstResponse = playerWhoTurnItIs == Board<7,6,4>::Player1 ? std::numeric_limits<double>::max() : std::numeric_limits<double>::min();
                        std::size_t worstMove = 8;

                        for(std::size_t m2 = 0; m2 < 7; ++m2)
                        {
                            Board<7,6,4> testBoard2 = testBoard;
                            if(testBoard2.AvailableMoveInColumn(m2))
                            {
                                testBoard2.AddChecker(m,playerWhoTurnItIsNot);

                                StateType state;
                                create_board_state(state, testBoard2, playerWhoTurnItIs);
                                auto outputs = NN->FeedForward(state);

                                if(playerWhoTurnItIs == Board<7,6,4>::Player1 && (outputs[0] < worstResponse || worstMove == 8))
                                {
                                    worstResponse = outputs[0];
                                    worstMove = m2;
                                }
                                else if(playerWhoTurnItIs == Board<7,6,4>::Player2 && (outputs[0] > worstResponse || worstMove == 8))
                                {
                                    worstResponse = outputs[0];
                                    worstMove = m2;
                                }
                            }
                        }

                        if(playerWhoTurnItIs == Board<7,6,4>::Player1 && (worstResponse > bestWorstResponse || bestMove == 8))
                        {
                            bestWorstResponse = worstResponse;
                            bestMove = m;
                        }
                        else if(playerWhoTurnItIs == Board<7,6,4>::Player2 && (worstResponse < bestWorstResponse || bestMove == 8))
                        {
                            bestWorstResponse = worstResponse;
                            bestMove = m;
                        }
                    }
                }
                if(bestMove == 8)
                {
                    std::cerr << "wasn't able to determine the best move to make" << std::endl;
                    return 0;
                }
                if(gameNumber <= numGames * percentOfGamesToRandomiseStart && turnNumber == 0)
                {
                    std::size_t rSelection = int(randomMove()) % (availableMoves.size());

                    selectedMove = availableMoves[rSelection];
                    moveFound = true;
                }
                else if(wasRandomMove)
                {
                    std::remove(availableMoves.begin(),availableMoves.end(),bestMove);
                    std::size_t rSelection = int(randomMove()) % (availableMoves.size());

                    selectedMove = availableMoves[rSelection];
                    moveFound = true;
                }
                else
                {
                    selectedMove = bestMove;
                    moveFound = true;
                }
            }

            StateType prevState;
            create_board_state(prevState,board,playerWhoTurnItIs);
            NN->FeedForward(prevState);
            *previousNN = *NN;

            // now that we have the move, add it to the board
            StateType state;
            board.AddChecker(selectedMove,playerWhoTurnItIs);
            create_board_state(state,board,playerWhoTurnItIsNot);

            auto outputs = NN->FeedForward(state);

            if(board.InARowConnected(4) == Board<7,6,4>::Player1)
            {
                totalLoss += NN->BackPropagateFinal({1},previousNN,alpha,beta,lambda);
                winState = true;
                ++numGamesWonP1;
            }
            else if(board.InARowConnected(4) == Board<7,6,4>::Player2)
            {
                totalLoss += NN->BackPropagateFinal({-1},previousNN,alpha,beta,lambda);
                winState = true;
                ++numGamesWonP2;
            }
            else if(!board.IsThereAvailableMove())
            {
                totalLoss += NN->BackPropagateFinal({0},previousNN,alpha,beta,lambda);
                winState = true;
            }
            else if(turnNumber > 0 && !wasRandomMove)
            {
                NN->BackPropagate(previousNN,alpha,beta,lambda);
            }

            if(!wasRandomMove)
            {
                outputs = NN->FeedForward(state);
            }

            ++turnNumber;
            playerWhoTurnItIs = playerWhoTurnItIsNot;
        }

        alpha -= decayRateAlpha;
        beta -= decayRateBeta;

        NN->ResetEligibilityTraces();

        if(gameNumber > 0 && randomChance > randomChangeFloor && gameNumber <= numGames * percentToReduceRandomOver)
        {
            randomChance -= randomChangeDecay;
            if(randomChance < randomChangeFloor)
                randomChance = randomChangeFloor;
        }

        if(gameNumber % gamesToOutput == 0 && gameNumber != 0)
        {
            totalLoss = totalLoss / gamesToOutput;
            matchFile << std::fixed << std::setprecision(51) << totalLoss << std::endl;
            totalLoss = 0.0;
        }
    }

    matchFile << std::endl << "Games won: " << numGamesWonP1 << " . " << numGamesWonP2 << std::endl;

    auto weights = NN->GetNetworkWeights();
    matchFile << std::endl;
    matchFile << std::endl;
    for(const auto& w : weights)
        matchFile << std::fixed << std::setprecision(51) << w << ", \n";
    matchFile << std::endl;

    return 0;
}

One place I think I may have an issue is the minimax that's choosing the best move to make.

There's a few additional pieces that I don't think are too pertinent to the issues I'm having.

The Problems

  1. It doesn't seem to matter whether I train 1000 games or 3000000 games, either Player 1 or Player 2 will win the vast majority of games. To the point of like 90 out of 100 games won by one player. If I output the actual individual game moves and outputs I can see that the games won by the other player are almost always the result of a lucky random move.

    At the same time, I notice that the prediction outputs sort of "favour" a player. I.e. the outputs seem to be on the negative side of 0, so Player 1 is always making the best moves it can for example, but they all seem to be predicted toward Player 2 winning.

    Sometimes it's Player 1 who wins majority, other times it's Player 2. I'm assuming that this is due to the random weights initialising slight toward one player.

    The first game or so doesn't favour one player over the other, but it very quickly starts to "lean" one way.

  2. I've tried training now over 3000000 games, that took 3 days, but the network still doesn't seem to be able to make good decisions. I've tested the network by having it play other "bots" on riddles.io Connect 4 comp.

    • It fails to recognise that it needs to block the opponents 4 in a row
    • It, even after 3000000 games, doesn't play the centre column as the first move, which we know is the only starting move you can make that will guarantee a win.

Any help and direction would be greatly appreciated. Specifically, is my implementation of TD-Lambda back-propagation correct?

0

There are 0 answers