I've been doing some adaptation to code in this blog about CNN for text clasification: http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
Everything works fine! But when I try to use the model trained to predict new instances it consumes all memory available. It seems that it's not liberating any memory when evaluates and load all the model again and again. As far as I know memory should be liberated after every sess.run command.
Here is the part of the code I'm working with:
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("input_x").outputs[0]
# input_y = graph.get_operation_by_name("input_y").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
# Add a vector for probas
probas =graph.get_operation_by_name("output/scores").outputs[0]
# Generate batches for one epoch
print("\nGenerating Bathces...\n")
gc.collect()
#mem0 = proc.get_memory_info().rss
batches = data_helpers.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
#mem1 = proc.get_memory_info().rss
print("\nBatches done...\n")
#pd = lambda x2, x1: 100.0 * (x2 - x1) / mem0
#print "Allocation: %0.2f%%" % pd(mem1, mem0)
# Collect the predictions here
all_predictions = []
all_probas = []
for x_test_batch in batches:
#Calculate probability of prediction been good
gc.collect()
batch_probas = sess.run(tf.reduce_max(tf.nn.softmax(probas),1), {input_x: x_test_batch, dropout_keep_prob: 1.0})
batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
all_predictions = np.concatenate([all_predictions, batch_predictions])
all_probas = np.concatenate([all_probas, batch_probas])
# Add summary ops to collect data
with tf.name_scope("eval") as scope:
p_h = tf.histogram_summary("eval/probas", batch_probas)
summary= sess.run(p_h)
eval_summary_writer.add_summary(summary)
Any help will be much appreciated
Cheers
Your training loop creates new TensorFlow operations (
tf.reduce_max()
,tf.nn.softmax()
andtf.histogram_summary()
) in each iteration, which will lead to more memory being consumed over time. TensorFlow is most efficient when you run the same graph many times, because it can amortize the cost of optimizing the graph over multiple executions. Therefore, to get the best performance, you should revise your program so that you create each of these operations once, before thefor x_test_batch in batches:
loop, and then re-use the same operations in each iteration.