Measure duration of executing combineByKey function in Spark

609 views Asked by At

I want to measure the time that the execution of combineByKey function needs. I always get a result of 20-22 ms (HashPartitioner) and ~350ms (without pratitioning) with the code below, independent of the file size I use (file0: ~300 kB, file1: ~3GB, file2: ~8GB)! Can this be true? Or am I doing something wrong???

JavaPairRDD<Integer, String> pairRDD = null;
JavaPairRDD<Integer, String> partitionedRDD = null;
JavaPairRDD<Integer, Float> consumptionRDD = null;

boolean partitioning = true;    //or false
int partitionCount = 100;       // between 1 and 200 I cant see any difference in the duration!

SparkConf conf = new SparkConf();
JavaSparkContext sc = new JavaSparkContext(conf);

input = sc.textFile(path);
pairRDD = mapToPair(input);
partitionedRDD = partition(pairRDD, partitioning, partitionsCount);

long duration = System.currentTimeMillis();
consumptionRDD = partitionedRDD.combineByKey(createCombiner, mergeValue, mergeCombiners);
duration = System.currentTimeMillis() - duration;       // Measured time always the same, independent of file size (~20ms with / ~350ms without partitioning)

// Do an action
Tuple2<Integer, Float> test = consumptionRDD.takeSample(true, 1).get(0);

sc.stop();

Some helper methods (shouldn't matter):

    // merging function for a new dataset
private static Function2<Float, String, Float> mergeValue = new Function2<Float, String, Float>() {
    public Float call(Float sumYet, String dataSet) throws Exception {
        String[] data = dataSet.split(",");
        float value = Float.valueOf(data[2]);
        sumYet += value;
        return sumYet;
    }
};

// function to sum the consumption
private static Function2<Float, Float, Float> mergeCombiners = new Function2<Float, Float, Float>() {
    public Float call(Float a, Float b) throws Exception {
        a += b;
        return a;
    }
};

private static JavaPairRDD<Integer, String> partition(JavaPairRDD<Integer, String> pairRDD, boolean partitioning, int partitionsCount) {
    if (partitioning) {
        return pairRDD.partitionBy(new HashPartitioner(partitionsCount));
    } else {
        return pairRDD;
    }
}

private static JavaPairRDD<Integer, String> mapToPair(JavaRDD<String> input) {
    return input.mapToPair(new PairFunction<String, Integer, String>() {
        public Tuple2<Integer, String> call(String debsDataSet) throws Exception {
            String[] data = debsDataSet.split(",");
            int houseId = Integer.valueOf(data[6]);
            return new Tuple2<Integer, String>(houseId, debsDataSet);
        }
    });
}
1

There are 1 answers

3
Bacon On

The web ui provides you with details on jobs/stage that your application has run. It details the time for each of them, and you can now filter various details such as Scheduler Delay, Task Deserialization Time, and Result Serialization Time.

The default port for the webui is 8080. Completed application are listed there, and you can then click on the name, or craft the url like this: x.x.x.x:8080/history/app-[APPID] to access those details.

I don't believe any other "built-in" methods exist to monitor the running time of a task/stage. Otherwise, you may want to go deeper and use a JVM debugging framework.

EDIT: combineByKey is a transformation, which means that it is not applied on your RDD, as opposed to actions (read more the lazy behaviour of RDDs here, chapter 3.1). I believe the time difference you're observing comes from the time SPARK takes to create the actual data structure when partitioning or not.

If a difference there is, you'll see it at action's time (takeSample here)