Matrix row difference, output a boolean vector

163 views Asked by At

I have an m x 3 matrix A and its row subset B (n x 3). Both are sets of indices into another, large 4D matrix; their data type is dtype('int64'). I would like to generate a boolean vector x, where x[i] = True if B does not contain row A[i,:].

There are no duplicate rows in either A or B.

I was wondering if there's an efficient way how to do this in Numpy? I found an answer that's somewhat related: https://stackoverflow.com/a/11903368/265289; however, it returns the actual rows (not a boolean vector).

3

There are 3 answers

2
unutbu On BEST ANSWER

You could follow the same pattern as shown in jterrace's answer, except use np.in1d instead of np.setdiff1d:

import numpy as np
np.random.seed(2015)

m, n = 10, 5
A = np.random.randint(10, size=(m,3))
B = A[np.random.choice(m, n, replace=False)]
print(A)
# [[2 2 9]
#  [6 8 5]
#  [7 8 0]
#  [6 7 8]
#  [3 8 6]
#  [9 2 3]
#  [1 2 6]
#  [2 9 8]
#  [5 8 4]
#  [8 9 1]]

print(B)
# [[2 2 9]
#  [1 2 6]
#  [2 9 8]
#  [3 8 6]
#  [9 2 3]]

def using_view(A, B, assume_unique=False):
    Ad = np.ascontiguousarray(A).view([('', A.dtype)] * A.shape[1])
    Bd = np.ascontiguousarray(B).view([('', B.dtype)] * B.shape[1])
    return ~np.in1d(Ad, Bd, assume_unique=assume_unique)

print(using_view(A, B, assume_unique=True))

yields

[False  True  True  True False False False False  True  True]

You can use assume_unique=True (which can speed up the calculation) since there are no duplicate rows in A or B.


Beware that A.view(...) will raise

ValueError: new type not compatible with array.

if A.flags['C_CONTIGUOUS'] is False (i.e. if A is not a C-contiguous array). Therefore, in general we need to use np.ascontiguous(A) before calling view.


As B.M. suggests, you could instead view each row using the "void" dtype:

def using_void(A, B):
    dtype = 'V{}'.format(A.dtype.itemsize * A.shape[-1])
    Ad = np.ascontiguousarray(A).view(dtype)
    Bd = np.ascontiguousarray(B).view(dtype)
    return ~np.in1d(Ad, Bd, assume_unique=True)

This is safe to use with integer dtypes. However, note that

In [342]: np.array([-0.], dtype='float64').view('V8') == np.array([0.], dtype='float64').view('V8')
Out[342]: array([False], dtype=bool)

so using np.in1d after viewing as void may return incorrect results for arrays with float dtype.


Here is a benchmark of some of the proposed methods:

import numpy as np
np.random.seed(2015)

m, n = 10000, 5000
# Note A may contain duplicate rows, 
# so don't use assume_unique=True for these benchmarks. 
# In this case, using assume_unique=False does not improve the speed much anyway.
A = np.random.randint(10, size=(2*m,3))
# make A not C_CONTIGUOUS; the view methods fail for non-contiguous arrays
A = A[::2]  
B = A[np.random.choice(m, n, replace=False)]

def using_view(A, B, assume_unique=False):
    Ad = np.ascontiguousarray(A).view([('', A.dtype)] * A.shape[1])
    Bd = np.ascontiguousarray(B).view([('', B.dtype)] * B.shape[1])
    return ~np.in1d(Ad, Bd, assume_unique=assume_unique)

from scipy.spatial import distance
def using_distance(A, B):
    return ~np.any(distance.cdist(A,B)==0,1)

from functools import reduce 
def using_loop(A, B):
    pred = lambda i: A[:, i:i+1] == B[:, i]
    return ~reduce(np.logical_and, map(pred, range(A.shape[1]))).any(axis=1)

from pandas.core.groupby import get_group_index, _int64_overflow_possible
from functools import partial
def using_pandas(A, B):
    shape = [1 + max(A[:, i].max(), B[:, i].max()) for i in range(A.shape[1])]
    assert not _int64_overflow_possible(shape)

    encode = partial(get_group_index, shape=shape, sort=False, xnull=False)
    a1, b1 = map(encode, (A.T, B.T))
    return ~np.in1d(a1, b1)

def using_void(A, B):
    dtype = 'V{}'.format(A.dtype.itemsize * A.shape[-1])
    Ad = np.ascontiguousarray(A).view(dtype)
    Bd = np.ascontiguousarray(B).view(dtype)
    return ~np.in1d(Ad, Bd)

# Sanity check: make sure all the functions return the same result
for func in (using_distance, using_loop, using_pandas, using_void):
    assert (func(A, B) == using_view(A, B)).all()

In [384]: %timeit using_pandas(A, B)
100 loops, best of 3: 1.99 ms per loop

In [381]: %timeit using_void(A, B)
100 loops, best of 3: 6.72 ms per loop

In [378]: %timeit using_view(A, B)
10 loops, best of 3: 35.6 ms per loop

In [383]: %timeit using_loop(A, B)
1 loops, best of 3: 342 ms per loop

In [379]: %timeit using_distance(A, B)
1 loops, best of 3: 502 ms per loop
0
Divakar On

You can treat A and B as two sets of XYZ arrays and calculate the euclidean distances between them with scipy.spatial.distance.cdist. The zero distances would be of interest to us. This distance calculation is supposed to be a pretty efficient implementation, so hopefully we would have an efficient solution to solve our case. So, the implementation to find such a boolean output would look like this -

from scipy.spatial import distance

out = ~np.any(distance.cdist(A,B)==0,1)
# OR np.all(distance.cdist(A,B)!=0,1)

Sample run -

In [582]: A
Out[582]: 
array([[0, 2, 2],
       [1, 0, 3],
       [3, 3, 3],
       [2, 0, 3],
       [2, 0, 1],
       [1, 1, 1]])

In [583]: B
Out[583]: 
array([[2, 0, 3],
       [2, 3, 3],
       [1, 1, 3],
       [2, 0, 1],
       [0, 2, 2],
       [2, 2, 2],
       [1, 2, 3]])

In [584]: out
Out[584]: array([False,  True,  True, False, False,  True], dtype=bool)
0
behzad.nouri On

since there are only 3 columns, one solution would be to just reduce accross columns:

>>> a
array([[2, 2, 9],
       [6, 8, 5],
       [7, 8, 0],
       [6, 7, 8],
       [3, 8, 6],
       [9, 2, 3],
       [1, 2, 6],
       [2, 9, 8],
       [5, 8, 4],
       [8, 9, 1]])
>>> b
array([[2, 2, 9],
       [1, 2, 6],
       [2, 9, 8],
       [3, 8, 6],
       [9, 2, 3]])

>>> from functools import reduce
>>> pred = lambda i: a[:, i:i+1] == b[:,i]
>>> reduce(np.logical_and, map(pred, range(a.shape[1]))).any(axis=1)
array([ True, False, False, False,  True,  True,  True,  True, False, False], dtype=bool)

though this would create an m x n intermediate array which may not be memory efficient.

Alternatively, if the values are indices, i.e. non-negative integers, you may use pandas.groupby.get_group_index to reduce to one dimensional arrays. This is an efficient algorithm which pandas use internally for groupby operations; The only caveat is that you may need to verify that there will not be any integer overflow:

>>> from pandas.core.groupby import get_group_index, _int64_overflow_possible
>>> from functools import partial

>>> shape = [1 + max(a[:, i].max(), b[:, i].max()) for i in range(a.shape[1])]
>>> assert not _int64_overflow_possible(shape)

>>> encode = partial(get_group_index, shape=shape, sort=False, xnull=False)
>>> a1, b1 = map(encode, (a.T, b.T))
>>> np.in1d(a1, b1)
array([ True, False, False, False,  True,  True,  True,  True, False, False], dtype=bool)