I have a 90×8 dataset that I feature-extracted (by summing 1's in every 10×10 cell) from 90 character images i.e. digits 1-9. Every row represents an image. I am trying to use following code to train a neural network and recognize new input images(that are digits between 1 and 9 inclusive):
net.trainFcn='traingdx';
net.performFcn='sse';
net.trainParam.goal=0.1;
net.trainParam.show=20;
net.trainParam.epochs=5000;
net.trainParam.mc=0.95;
net =newff(minmax(datasetNormalized'),[20 9],{'logsig' 'logsig'});
T=reshape(repmat([1:9],10,1),1,90);
[net,tr]=train(net,datasetNormalized,T);
Afterwards I want to use the following to recognize new images using the trained network. m is an image character that has also been feature extracted.
[a,m]=max(sim(net,m));
disp(b);
I am getting the following errors and I don't have any idea how to solve it:
Error using trainlm (line 109)
Inputs and targets have different numbers of samples.
Error in network/train (line 106) [net,tr] = feval(net.trainFcn,net,X,T,Xi,Ai,EW,net.trainParam);
Error in Neural (line 55) [net,tr]=train(net,datasetNormalized,T);
Note: datasetNormalized is my dataset normalized in [0,1]. Which part causes the problem?
Inputs and targets have different numbers of samples. it seems to be the problem