I am a newbie in using and making sense of ML methods and currently doing survival analysis using gbm
package in R.
I have difficulty understanding some of the output of the survival prediction model. I have checked this tutorial and this post but still, find trouble in making sense of the outputted survival prediction model.
Here is my code for analysis based on example data:
rm(list=ls(all=TRUE))
library(randomForestSRC)
library(gbm)
library(survival)
library(Hmisc)
data(pbc, package="randomForestSRC")
data <- na.omit(pbc)
set.seed(9512)
train <- sample(1:nrow(data), round(nrow(data)*0.7))
data.train <- data[train, ]
data.test <- data[-train, ]
set.seed(9741)
model <- gbm(Surv(days, status)~.,
data.train,
interaction.depth=2,
shrinkage=0.01,
n.trees=500,
distribution="coxph",
cv.folds = 5)
summary(model)
best.iter <- gbm.perf(model, plot.it = TRUE, method = 'cv',
overlay = TRUE) #to get the optimal number of Boosting iterations
best.iter
#Us the best number of tree to produce predicted values for each observation in newdata
# return a vector of prediction on n.trees indicting log hazard scale.f(x)
# By default the predictions are on log hazard scale for coxph
# proportional hazard model assumes h(t|x)=lambda(t)*exp(f(x)).
# estimate the f(x) component of the hazard function
pred.train <- predict(object=model, newdata=data.train, n.trees = best.iter)
pred.test <- predict(object=model, newdata=data.test, n.trees = best.iter)
#trainig set
Hmisc::rcorr.cens(-pred.train, Surv(data.train$days, data.train$status))
#val set
Hmisc::rcorr.cens(-pred.test, Surv(data.test$days, data.test$status))
# Estimate the cumulative baseline hazard function using training data
basehaz.cum <- basehaz.gbm(t=data.train$days, #The survival times.
delta=data.train$status, #The censoring indicator
f.x=pred.train, #The predicted values of the regression model on the log hazard scale.
t.eval = data.train$days, #Values at which the baseline hazard will be evaluated
cumulative = TRUE, #If TRUE the cumulative survival function will be computed
smooth = FALSE) #If TRUE basehaz.gbm will smooth the estimated baseline hazard using Friedman's super smoother supsmu.
basehaz.cum
#Estimation of survival rate of all:
surv.rate <- exp(-exp(pred.train)*basehaz.cum)
surv.rate
res_train <- data.train
# predicted outcome for train set
res_train$pred <- pred.train
res_train$survival_rate <- surv.rate
res_train
# Estimate the cumulative baseline hazard function using training data
basehaz.cum <- basehaz.gbm(t=data.test$days, #The survival times.
delta=data.test$status, #The censoring indicator
f.x=pred.test, #The predicted values of the regression model on the log hazard scale.
t.eval = data.test$days, #Values at which the baseline hazard will be evaluated
cumulative = TRUE, #If TRUE the cumulative survival function will be computed
smooth = FALSE) #If TRUE basehaz.gbm will smooth the estimated baseline hazard using Friedman's super smoother supsmu.
basehaz.cum
#Estimation of survival rate of all at specified time is:
surv.rate <- exp(-exp(pred.test)*basehaz.cum)
surv.rate
res_test <- data.test
# predicted outcome for test set
res_test$pred <- pred.test
res_test$survival_rate <- surv.rate
res_test
#--------------------------------------------------
#Estimate survival rate at time of interest
# Specify time of interest
time.interest <- sort(unique(data.train$days[data.train$status==1]))
# Estimate the cumulative baseline hazard function using training data
basehaz.cum <- basehaz.gbm(t=data.train$days, #The survival times.
delta=data.train$status, #The censoring indicator
f.x=pred.train, #The predicted values of the regression model on the log hazard scale.
t.eval = time.interest, #Values at which the baseline hazard will be evaluated
cumulative = TRUE, #If TRUE the cumulative survival function will be computed
smooth = FALSE) #If TRUE basehaz.gbm will smooth the estimated baseline hazard using Friedman's super smoother supsmu.
#For individual $i$ in test set, estimation of survival function is:
surf.i <- exp(-exp(pred.test[1])*basehaz.cum) #survival rate
#Estimation of survival rate of all at specified time is:
specif.time <- time.interest[10]
surv.rate <- exp(-exp(pred.test)*basehaz.cum[10])
cat("Survival Rate of all at time", specif.time, "\n")
print(surv.rate)
The output returned from the predict
function represents the f(x)
component of the hazard function ( h(t|x)=lambda(t)*exp(f(x)) ).
My questions:
• A bit confused about whether hazard ratios can be calculated here?
• Wondering how can I divide the population into low-risk and high-risk groups? Can I rely on the estimated f(x) component of the hazard function to do the scoring system for the training set? I aim from this to have a scoring system where I show KM plots for low and high-risk groups for training and test sets.
• How can I construct calibration curve plots where I can plot observed survival vs. predicted survival for the training set and test set?
Amer. Thx for your reading of my tutorial!
As you mentioned that "The output returned from the
predict
function represents thef(x)
component of the hazard function (h(t|x)=lambda(t)*exp(f(x))
)", maybe we need to understand the hazard function, i.e. h(t|x).Before this, please sure that you have the basic knowledge of survival analysis. if not, it's recommended to read the great post. I think the post would help you solve the questions.
Back to your questions:
predict
function. Therefore, the hazard ratio can be calculated byexp()
.