I am confused by the following quote from Wikipedia:
In other words, if a language was reasonable enough to allow an efficient one-pass parser, it could be described by an LR(k) grammar. And that grammar could always be mechanically transformed into an equivalent (but larger) LR(1) grammar. So an LR(1) parsing method was, in theory, powerful enough to handle any reasonable language. In practice, the natural grammars for many programming languages are close to being LR(1).[citation needed]
This means that a parser generator, like bison
, is very powerful (since it can handle LR(k)
grammars), if one is able to convert a LR(k)
grammar to a LR(1)
grammar. Do some examples of this exist, or a recipe on how to do this? I'd like to know this since I have a shift/reduce conflict in my grammar, but I think this is because it is a LR(2)
grammar and would like to convert it to a LR(1)
grammar. Side question: is C++
an unreasonable language, since I've read, that bison
-generated parsers cannot parse it.
For references on the general purpose algorithm to find a covering
LR(1)
grammar for anLR(k)
grammar, see Real-world LR(k > 1) grammars?The general purpose algorithm produces quite large grammars; in fact, I'm pretty sure that the resulting PDA is the same size as the
LR(k)
PDA would be. However, in particular cases it's possible to come up with simpler solutions. The general principle applies, though: you need to defer the shift/reduce decision by unconditionally shifting until the decision can be made with a single lookahead token.One example: Is C#'s lambda expression grammar LALR(1)?
Without knowing more details about your grammar, I can't really help more than that.
With regard to C++, the things that make it tricky to parse are the preprocessor and some corner cases in parsing (and lexing) template instantiations. The fact that the parse of an expression depends on the "kind" (not type) of a symbol (in the context in which the symbol occurs) makes precise parsing with bison complicated. [1] "Unreasonable" is a value judgement which I'm not comfortable making; certainly, tool support (like accurate syntax colourizers and tab-completers) would have been simple with a different grammar, but the evidence is that it is not that hard to write (or even read) good C++ code.
Notes:
[1] The classic tricky parse, which also applies to C, is
(a)*b
, which is a cast of a dereference ifa
represents a type, and otherwise a multiplication. If you were to write it in the context:c/(a)*b
, it would be clear that an AST cannot be constructed without knowing whether it's a cast or a product, since that affects the shape of the AST,A more C++-specific issue is:
x<y>(z)
(orx<y<z>>(3)
) which parse (and arguably tokenise) differently depending on whetherx
names a template or not.