Loss functions converts y_pred to tensor, which means output of a model can't be of RaggedTensor type

198 views Asked by At

I'm trying to train a sequence-to-sequence autoencoder. Input shape is [sample, time_step, input_dim] and the timesteps' length of each sample is different from each other. Here is my model's implementation:

input_dim = 385
output_dim = 32
cells = int(output_dim / 2)

def create_model():
    model = Sequential()
    model.add(Input(shape=(None, input_dim,), ragged=True))
    model.add(TimeDistributed(Dense(output_dim, activation='relu')))
    model.add(LSTM(cells, return_sequences=True))
    model.add(TimeDistributed(Dense(output_dim, activation='relu')))
    model.add(TimeDistributed(Dense(input_dim, activation='sigmoid')))
    return model

My initial data are Python lists in form: [list(), list(), list()...], where each list() is a sequence and has shape [time_step, input_dim]. I convert the data to Tensorflow RaggedTensor by this function:

def process_data(data):
    data_shape = [len(i) for i in data]
    data = [item for sublist in data for item in sublist]
    data = to_categorical(data, num_classes=input_dim)
    data = tf.RaggedTensor.from_row_lengths(data, data_shape)
    return data

Here is my training code:

model = create_model()
model.compile(optimizer='adam', loss='mse')

# Load training data for autoencoder
train_ae = np.load('dataset/ADFA-LD/train_ae.npy', allow_pickle=True)
train_ae = process_data(train_ae)

# Load validation data (a combination of normal and malware data)
val_norm = np.load('dataset/ADFA-LD/val_norm.npy', allow_pickle=True)
val_att = np.load('dataset/ADFA-LD/val_att.npy', allow_pickle=True)
y_val = np.concatenate([np.zeros(len(val_norm)), np.ones(len(val_att))])
val_norm = process_data(val_norm)
val_att = process_data(val_att)
x_val = tf.concat([val_norm, val_att], axis=0)


# Train
cb = validate(x_val, y_val)
model.fit(x=train_ae, y=train_ae, epochs=10, callbacks=[cb])

When I train, the error shows up:

    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training.py:806 train_function  *
        return step_function(self, iterator)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training.py:789 run_step  **
        outputs = model.train_step(data)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training.py:748 train_step
        loss = self.compiled_loss(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:204 __call__
        loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\losses.py:149 __call__
        losses = ag_call(y_true, y_pred)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\losses.py:250 call  **
        y_pred, y_true = tf_losses_util.squeeze_or_expand_dimensions(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\ops\losses\util.py:71 squeeze_or_expand_dimensions
        y_true, y_pred = confusion_matrix.remove_squeezable_dimensions(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\ops\confusion_matrix.py:62 remove_squeezable_dimensions
        predictions = ops.convert_to_tensor(predictions)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\framework\ops.py:1499 convert_to_tensor
        ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\framework\constant_op.py:338 _constant_tensor_conversion_function
        return constant(v, dtype=dtype, name=name)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\framework\constant_op.py:263 constant
        return _constant_impl(value, dtype, shape, name, verify_shape=False,
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\framework\constant_op.py:280 _constant_impl
        tensor_util.make_tensor_proto(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\framework\tensor_util.py:550 make_tensor_proto
        raise TypeError("Failed to convert object of type %s to Tensor. "

    TypeError: Failed to convert object of type <class 'tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor'> to Tensor. Contents: tf.RaggedTensor(values=Tensor("sequential/time_distributed_2/dense_2/Sigmoid:0", shape=(None, 385), dtype=float32), row_splits=Tensor("sequential/time_distributed_2/RaggedFromRowLengths/control_dependency:0", shape=(None,), dtype=int64)). Consider casting elements to a supported type.

I'm assuming the error is due to failed conversion from RaggedTensor to Tensor, and from the log you can see that the error is caused in functions that related to loss and prediction as well:

    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training.py:748 train_step
        loss = self.compiled_loss(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:204 __call__
        loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\losses.py:149 __call__
        losses = ag_call(y_true, y_pred)
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\losses.py:250 call  **
        y_pred, y_true = tf_losses_util.squeeze_or_expand_dimensions(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\ops\losses\util.py:71 squeeze_or_expand_dimensions
        y_true, y_pred = confusion_matrix.remove_squeezable_dimensions(
    C:\Users\hennm\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\ops\confusion_matrix.py:62 remove_squeezable_dimensions
        predictions = ops.convert_to_tensor(predictions)

So I think loss function is implemented in a way that tries to convert y_pred to Tensor, and so output (prediction) as RaggedTensor type can't be used. Is there anyway to deal with that if that's the case?

1

There are 1 answers

0
AudioBubble On

Can you convert the ragged tensor to tensor and use in further processing.

For example:

import tensorflow as tf

mylist = [
    [[1, 2, 3], [5, 4, 6]], 
    [[2, 8, 9]]
]

rt = tf.ragged.constant(mylist)

features_set = rt.to_tensor()

features_set

Output:

<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[1, 2, 3],
        [5, 4, 6]],

       [[2, 8, 9],
        [0, 0, 0]]], dtype=int32)>