Keras classifiers accuracy does not improve

23 views Asked by At

I have been trying to work out how to do classification using ImageDataGenerator and not having much luck. When I try to fit the model the accuracy output is different each time, from .14% to 90% at the start but then it stays at that accuracy no matter how much training time it is given. I am not sure where I have gone wrong?

I am using the fruit dataset form kaggle https://www.kaggle.com/moltean/fruits

import tensorflow as tf
from tensorflow import keras

# Importing all necessary libraries
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.optimizers import SGD

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)


trainDirectory = fruits 360/Training"
testDirectory = fruits 360/Test"

train_datagen = ImageDataGenerator( 
    rescale=1./255,
    shear_range=0.1,
    zoom_range=0.1,
    horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
    trainDirectory,
    target_size=(100,100),
    batch_size=32,
    class_mode='categorical',
    shuffle=True)
validation_generator = test_datagen.flow_from_directory(
    testDirectory,
    target_size=(100, 100),
    batch_size=32,
    shuffle=True)

img_width=100
img_height=100

if K.image_data_format() == 'channels_first': 
    input_shape = (3, img_width, img_height) 
else: 
    input_shape = (img_width, img_height, 3) 

model = Sequential() 
model.add(Conv2D(32, (2, 2), input_shape=input_shape)) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(32, (2, 2))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(64, (2, 2))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Flatten()) 
model.add(Dense(64)) 
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(1)) 
model.add(Activation('sigmoid')) 

opt = SGD(lr=0.01)
model.compile(loss=keras.losses.CategoricalCrossentropy(), 
             optimizer = opt, 
             metrics=['accuracy']) 

model.fit(
    train_generator,
    steps_per_epoch=2000,
    epochs=3,
    validation_data=validation_generator,
    validation_steps=800)


#output


Epoch 1/3
200/200 [==============================] - 34s 172ms/step - loss: 1.1921e-07 - accuracy: 0.2281 - 
val_loss: 1.1921e-07 - val_accuracy: 0.0230
Epoch 2/3
200/200 [==============================] - 30s 149ms/step - loss: 1.1921e-07 - accuracy: 0.2254 - 
val_loss: 1.1921e-07 - val_accuracy: 0.0296
0

There are 0 answers