With a control PC, I am addressing a R&S ESPI Receiver device to perform a frequency scan and return the measurement results back via BAT-EMC control software and a NI GPIB-USB controller in between. My target is to track the binary measurement data (Definite Length Block Data according to IEEE 488.2) sent to the control PC to understand how the device is deciding on the byte size of each binary block sent.

The trace shows that binary blocks are sent with no consistent pattern or rule! E.g, running the same scan with the same frequency range and step twice may result in a different distribution of the measurement values' bytes on binary blocks (and possibly different total number of blocks sent), although the amount of data delivered is the same.

Any help to figure out how the device and control software are communicating the measurement data?

PS: The NI trace at the level of GPIB controller is not showing that the control software is specifying a byte size when querying for the next block, neither is the instrument sending this piece of info when it is issuing a service request so that it is queried for more available data by the software (according to the trace).

1

There are 1 answers

0
kd4ttc On

Make sure that you are giving enough time for the instrument to respond. Possibly you are sending commands from the PC which would assert the ATN line and interrupt the response. You should be able to configure the instrument to send one result. Configure the instrument as a listener and talker and set the instrument to send only one response per trigger. Then send the group execute trigger (GET) and read the results off the bus. When it’s done measure how long it took for that packet to get sent. If you are sending triggers before the full response you will be terminating the output stream. I suspect this because the streams are randomly different.

I’m just starting to learn GPIB so please write back what happened.