Suppose I have this:
go func() {
for range time.Tick(1 * time.Millisecond) {
a, b = b, a
}
}()
And elsewhere:
i := a // <-- Is this safe?
For this question, it's unimportant what the value of i
is with respect to the original a
or b
. The only question is whether reading a
is safe. That is, is it possible for a
to be nil
, partially assigned, invalid, undefined, ... anything other than a valid value?
I've tried to make it fail but so far it always succeeds (on my Mac).
I haven't been able to find anything specific beyond this quote in the The Go Memory Model doc:
Reads and writes of values larger than a single machine word behave as multiple machine-word-sized operations in an unspecified order.
Is this implying that a single machine word write is effectively atomic? And, if so, are function pointer writes in Go a single machine word operation?
Update: Here's a properly synchronized solution
Unsynchronized, concurrent access to any variable from multiple goroutines where at least one of them is a write is undefined behavior by The Go Memory Model.
Undefined means what it says: undefined. It may be that your program will work correctly, it may be it will work incorrectly. It may result in losing memory and type safety provided by the Go runtime (see example below). It may even crash your program. Or it may even cause the Earth to explode (probability of that is extremely small, maybe even less than 1e-40, but still...).
This undefined in your case means that yes,
i
may benil
, partially assigned, invalid, undefined, ... anything other than eithera
orb
. This list is just a tiny subset of all the possible outcomes.Stop thinking that some data races are (or may be) benign or unharmful. They can be the source of the worst things if left unattended.
Since your code writes to the variable
a
in one goroutine and reads it in another goroutine (which tries to assign its value to another variablei
), it's a data race and as such it's not safe. It doesn't matter if in your tests it works "correctly". One could take your code as a starting point, extend / build on it and result in a catastrophe due to your initially "unharmful" data race.As related questions, read How safe are Golang maps for concurrent Read/Write operations? and Incorrect synchronization in go lang.
Strongly recommended to read the blog post by Dmitry Vyukov: Benign data races: what could possibly go wrong?
Also a very interesting blog post which shows an example which breaks Go's memory safety with intentional data race: Golang data races to break memory safety