I'm using a logistic regression to estimate the probability of scoring a goal in soccer/footbal. I've got 5 features. My target values are 1 (goal) or 0 (no goal).
As is always a must, I've scaled my features before fitting my model. I've used the MinMaxScaler, who scales all features in the range [0-1] as follows: X_scaled = (x - x_min)/(x_max - x_min)
The coefficients of my logistic regression model are the following:
coef = [[-2.26286643 4.05722387 0.74869811 0.20538172 -0.49969841]]
My first thoughts are that the second features is the most important, followed by the first. Is this always true?
I read that "In other words, for a one-unit increase in the 'the second feature', the expected change in log odds is 4.05722387." on this site, but there, their features were normalized with a mean of 50 and some std deviation.
If I do not scale my features, the coefficients of the model are the following:
coef = [[-0.04743728 0.04394143 -0.00247654 0.23769469 -0.55051824]]
And now it seems that the first feature is more important than the second one. I read in literature about my topic that this is indeed true. So this confuses me off course.
My questions are:
- Which of my features is the most important and what/why is the best methodology to find it?
- How can I interprete the meaning of the scaled coefficients? E.g. what does an increase with 1 meter in feature 1 mean? Can I throw 1 meter in the MinMaxScaler, see what comes out and use that as 'the one inut increase'?
- Is it true that the final probability wil be computed as
y = 1/(1 + exp(-fx))
withfx = intercept + feature1*coef1 + feature2*coef2 + ...
(with all features scaled).
Look at several versions of marginal effects calculations. For example, see overview/discussion in a blog Stata's example resources for R
The interpretation depends on which marginal effects you calculate. You just need to account for scaling when you talk about one unit of X increasing/decreasing the change in probability or odds ratio etc.
Yes, it's just that features x are in scaled measures.