I found a code that works fine in python.
def text_classification_inference(self, input_text):
if not self.model or not self.tokenizer or not self.id2label:
print('Something wrong has been happened!')
return
pt_batch = self.tokenizer(
input_text,
padding=True,
truncation=True,
max_length=self.config.max_position_embeddings,
return_tensors="pt"
)
pt_outputs = self.model(**pt_batch)
pt_predictions = torch.argmax(F.softmax(pt_outputs.logits, dim=1), dim=1)
output_predictions = []
for i, sentence in enumerate(input_text):
output_predictions.append((sentence, self.id2label.get(pt_predictions[i].item())))
return output_predictions
This is the code github address: https://github.com/Mofid-AI/persian-nlp-benchmark/blob/main/text_classification.py
I want to do the same thing with traformers library in javascipt(traformers.js). I tried pipeline api in js successfully but encountered error for too long inputs. So I need to set truncation=True for tokenizer in js. I'm beginner to both python and javascript. Appreciate in advance