in pytorch how to feed the ouput from the convolution neaural networks into deep q network

29 views Asked by At

import torch import torch.nn as nn

class Convnet(nn.Module): def init(self): super(Convnet, self).init() # CNN architecture here # 3@12x15 -> 4@12x16 -> 4@6x8 self.conv1 = nn.Conv2d(in_channels=3,out_channels=4, stride=1, kernel_size=1 ) self.pool = nn.MaxPool2d(2, 2) # 4@6x8 -> 8@6x8 -> 8@3x4 self.conv2 = nn.Conv2d(in_channels=4,out_channels=8, stride=1, kernel_size=1) self.fc3 = nn.Linear(8 * 4 * 3, 106) self.fc4 = nn.Linear(120, 64) self.fc5 = nn.Linear(64, 32)

def forward(self, x, trafficLight_status, road_status):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = nn.Flatten()(x)
    x = F.relu(self.fc3(x))
    x = torch.cat((x,trafficLight_status, road_status), dim=1)
    x = F.relu(self.fc4(x))
    x = self.fc5(x)
    return x
    

Define your DQN model

class QActor(nn.Module): def init(self, cnn_output_size, action_size): super(QActor, self).init() class QActor(nn.Module):

def __init__(self, state_size, action_size, action_parameter_size, hidden_layers=(100,), action_input_layer=0,
             output_layer_init_std=None, activation="relu", **kwargs):
    super(QActor, self).__init__()
    self.state_size = state_size
    self.action_size = action_size
    self.action_parameter_size = action_parameter_size
    self.activation = activation

    # create layers
    self.layers = nn.ModuleList()
    inputSize = self.state_size + self.action_parameter_size
    lastHiddenLayerSize = inputSize
    if hidden_layers is not None:
        nh = len(hidden_layers)
        self.layers.append(nn.Linear(inputSize, hidden_layers[0]))
        for i in range(1, nh):
            self.layers.append(nn.Linear(hidden_layers[i - 1], hidden_layers[i]))
        lastHiddenLayerSize = hidden_layers[nh - 1]
    self.layers.append(nn.Linear(lastHiddenLayerSize, self.action_size))

    # initialise layer weights
    for i in range(0, len(self.layers) - 1):
        nn.init.kaiming_normal_(self.layers[i].weight, nonlinearity=activation)
        nn.init.zeros_(self.layers[i].bias)
    if output_layer_init_std is not None:
        nn.init.normal_(self.layers[-1].weight, mean=0., std=output_layer_init_std)
    # else:
    #     nn.init.zeros_(self.layers[-1].weight)
    nn.init.zeros_(self.layers[-1].bias)

def forward(self, state, trafficLight_status,road_status, action_parameters):
    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = ConvNet().to(device)
    state = model(state, trafficLight_status, road_status)
    model = ConvNet().to(device)

    state = model(state, trafficLight_status, road_status)
    # implement forward
    negative_slope = 0.01

    x = torch.cat((state, action_parameters), dim=1)
    num_layers = len(self.layers)
    for i in range(0, num_layers - 1):
        if self.activation == "relu":
            x = F.relu(self.layers[i](x))
        elif self.activation == "leaky_relu":
            x = F.leaky_relu(self.layers[i](x), negative_slope)
        else:
            raise ValueError("Unknown activation function "+str(self.activation))
    Q = self.layers[-1](x)
    return Q, state

Create instances of the CNN and DQN models

cnn = Convnet() dqn = QActor(state_size, action_size, action_parameter_size, hidden_layers=(100,), action_input_layer=0, output_layer_init_std=None, activation="relu", **kwargs)

Pass the CNN output to the DQN

cnn_output = ConvNet(x, trafficLight_status, road_status) # Pass your input to the CNN

Detach the flattened output from the computation graph

flattened_output = flattened_output.detach().requires_grad_(True)

Pass the detached flattened output to the DQN and compute the Q-values

q_values = dqn(flattened_output)

I tried to update the forward network in QActor network using the below piece of code but the optimization and backtracking of the Convnet seems to not work the parameters are not being updated

def forward(self, state, trafficLight_status,road_status, action_parameters): # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = ConvNet().to(device) state = model(state, trafficLight_status, road_status) model = ConvNet().to(device) # Enable gradient tracking for CNN parameter

    for param in model.parameters():
        param.requires_grad = True

    state = model(state, trafficLight_status, road_status)
    # Enable gradient tracking for the flattened output
    state = state.detach().requires_grad_(True)
0

There are 0 answers