Here is the python code that takes the data from my query and packages it to go into a csv file.

...
    col_headers = [ i[0] for i in cursor.description ]
    rows = [ list(i) for i in cursor.fetchall()] 
    df = pd.DataFrame(rows, columns=col_headers)
    
    df.to_csv("PremiseCPE.csv", index=False)
       
    for row in cursor.fetchall():
        print (row)
...
  

The incoming data is in columns. I need to add an additional column (#6) called "Placemarks". I then need to add values in the new column row for each output from the database based on the values in in column #3 which is called cpeStatus. Below is the type of query structure I tried while creating a kml file:

...
    iif (row[4]) = 'Off', (row[6]) = "http://maps.google.com/mapfiles/kml/shapes/forbidden.png"
    ElseIf (row[4]) = 'Active', (row[6]) = "http://maps.google.com/mapfiles/kml/shapes/ranger_station.png"
    ElseIf (row[4]) = 'Ready, (row[6]) = "http://maps.google.com/mapfiles/kml/shapes/mechanic.png"
    ElseIf (row[4]) = 'Alarm', (row[6]) = "http://maps.google.com/mapfiles/kml/shapes/caution.png"
    ElseIf (row[4]) = 'Null', (row[6]) = "http://maps.google.com/mapfiles/kml/shapes/white_bubble.png"
    End If
...

The goal is to try to run this at the csv file level.

Can anyone help?

1

There are 1 answers

2
rcriii On

As @MattDMo says, you need to do this in the dataframe before writing the CSV. Also, I prefer a dictionary lookup to a long if...elif...else in python. Lastly, I suggest using pd.read_sql to query the database and create the df.

import pandas as pd

col_headers = ['col1', 'cols2', 'yada', 'cpeStatus', 'murgatroyd', 'noimagination']

rows = [[1, 2, 3, 'Off', 'is', 42],
        [2, 4, 42, 'Active', 'the', 42],
        [3, 9, 12, 'Ready', 'best', 42],
        [4, 16, 20, 'Off', 'name', 42],
        [5, 25, 30, 'Alarm', 'no', 42],
        [6, 36, 42, 'Null', 'its', 42],
        [7, 49, 56, 'Danger', 'not', 42],]

df = pd.DataFrame(rows, columns=col_headers)

plmks = {'Off': "forbidden.png",
         'Active': "ranger_station.png",
         'Ready': "mechanic.png",
         'Alarm': "caution.png",
         'Null': "white_bubble.png"}

df['Placemarks'] = [plmks.get(st, "headslap.png") for st in df['cpeStatus']]
print(df)
df.to_csv("PremiseCPE.csv", index=False)

yields the following df:

0     1      2     3       Off         is             42       forbidden.png
1     2      4    42    Active        the             42  ranger_station.png
2     3      9    12     Ready       best             42        mechanic.png
3     4     16    20       Off       name             42       forbidden.png
4     5     25    30     Alarm         no             42         caution.png
5     6     36    42      Null        its             42    white_bubble.png
6     7     49    56    Danger        not             42        headslap.png

and the following CSV:

col1,cols2,yada,cpeStatus,murgatroyd,noimagination,Placemarks
1,2,3,Off,is,42,forbidden.png
2,4,42,Active,the,42,ranger_station.png
3,9,12,Ready,best,42,mechanic.png
4,16,20,Off,name,42,forbidden.png
5,25,30,Alarm,no,42,caution.png
6,36,42,Null,its,42,white_bubble.png
7,49,56,Danger,not,42,headslap.png