I started with Caffe
and ran it well. I need to square weights in inner product layer
. The Forward_cpu
function expresses the weight
, but I don't know how to square it.
forward_cpu
function is defined as follow:
template <typename Dtype>
void InnerProductLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* sqr_weight;
caffe_sqr<Dtype>(this->blobs_[0]->count(), weight, sqr_weight);
caffe_cpu_gemm<Dtype>(CblasNoTrans, transpose_ ? CblasNoTrans : CblasTrans,
M_, N_, K_, (Dtype)1.,
bottom_data, weight, (Dtype)0., top_data);
if (bias_term_) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, N_, 1, (Dtype)1.,
bias_multiplier_.cpu_data(),
this->blobs_[1]->cpu_data(), (Dtype)1., top_data);
}
}
Note that I use caffe_sqr
, but caffe_sqr<Dtype>(weight.count(), weights, new_weights);
returns an error. When I make my new layer, the warning is:
warning: ‘sqr_weight’ is used uninitialized in this function [-Wuninitialized]
caffe_sqr<Dtype>(this->blobs_[0]->count(), weight, sqr_weight);
and after training my model, error is:
F1229 20:00:38.622575 5272 mkl_alternate.hpp:34] Check failed: y
Check failure stack trace:
@ 0x7f4f97e675cd google::LogMessage::Fail()
@ 0x7f4f97e69433 google::LogMessage::SendToLog()
@ 0x7f4f97e6715b google::LogMessage::Flush()
@ 0x7f4f97e69e1e google::LogMessageFatal::~LogMessageFatal()
@ 0x7f4f98338760 vSqr<>()
@ 0x7f4f982eb45a caffe::PositiveInnerProductLayer<>::Forward_cpu()
@ 0x7f4f9830b0d3 caffe::Net<>::ForwardFromTo()
@ 0x7f4f9830b347 caffe::Net<>::ForwardPrefilled()
@ 0x7f4f981e075f caffe::Solver<>::Test()
@ 0x7f4f981e119e caffe::Solver<>::TestAll()
@ 0x7f4f981e12eb caffe::Solver<>::Step()
@ 0x7f4f981e1f85 caffe::Solver<>::Solve()
@ 0x40aafb train()
@ 0x406f48 main
@ 0x7f4f970f6830 __libc_start_main
@ 0x407609 _start
@ (nil) (unknown)
Note that
weight
is defined as a pointer toDtype
, pointers do not havecount()
method.You need the
count()
of the weight blob: