How to speed up the model creation process of OpenNLP

1.5k views Asked by At

I am using OpenNLP Token Name finder for parsing the Unstructured data, I have created a corpus(training set) of 4MM records but as I am creating a model out of this corpus using OpenNLP API's in Eclipse, process is taking around 3 hrs which is very time consuming. Model is building on default parameters that is iteration 100 and cutoff 5.

So my question is, how can I speed up this process, how can I reduce the time taken by the process for building the model.

Size of the corpus could be the reason for this but just wanted to know if someone came across this kind of problem and if so, then how to solve this.

Please provide some clue.

Thanks in advance!

2

There are 2 answers

4
David Rabinowitz On BEST ANSWER

Usually the first approach to handle such issues is to split the training data to several chunks, and let each one to create a model of its own. Afterwards you merge the models. I am not sure that this is valid in this case (I'm not an OpenNLP expert), there's another solution below. Also, as it seems that the OpenNLP API provides only a single threaded train() methods, I would file an issue requesting a multi threaded option.

For a slow single threaded operation the two main slowing factors are IO and CPU, and both can be handled separately:

  • IO - which hard drive do you use? Regular (magnetic) or SSD? moving to SSD should help.
  • CPU - which CPU are you using? moving to a faster CPU will help. Don't pay attention to the number of cores, as here you want the raw speed.

An option you may want to consider to to get an high CPU server from Amazon web services or Google Compute Engine and run the training there - you can download the model afterwards. Both give you high CPU servers utilizing Xeon (Sandy Bridge or Ivy Bridge) CPUs and local SSD storage.

3
Vihari Piratla On

I think you should make algorithm related changes before upgrading the hardware.
Reducing the sentence size
Make sure you don't have unnecessarily long sentences in the training sample. Such sentences don't increase the performance but have a huge impact on computation. (Not sure of the order) I generally put a cutoff at 200 words/sentence. Also look at the features closely, these are the default feature generators
two kinds of WindowFeatureGenerator with a default window size of only two OutcomePriorFeatureGenerator PreviousMapFeatureGenerator BigramNameFeatureGenerator SentenceFeatureGenerator
These features generators generate the following features in the given sentence for the word: Robert.

Sentence: Robert, creeley authored many books such as Life and Death, Echoes and Windows.
Features:
w=robert
n1w=creeley
n2w=authored
wc=ic
w&c=robert,ic
n1wc=lc
n1w&c=creeley,lc
n2wc=lc
n2w&c=authored,lc
def
pd=null
w,nw=Robert,creeley
wc,nc=ic,lc
S=begin


ic is Initial Capital, lc is lower case

Of these features S=begin is the only sentence dependant feature, which marks that Robert occurred in the start of the sentence.
My point is to explain the role of a complete sentence in training. You can actually drop the SentenceFeatureGenerator and reduce the sentence size further to only accomodate few words in the window of the desired entity. This will work just as well.
I am sure this will have a huge impact on complexity and very little on performace.

Have you considered sampling?
As I have described above, the features are very sparse representation of the context. May be you have many sentences with duplicates, as seen by the feature generators. Try to detect these and sample in a way to represent sentences with diverse patterns, ie. it should be impossible to write only a few regular expressions that matches them all. In my experience, training samples with diverse patterns did better than those that represent only a few patterns, even though the former had a much smaller number of sentences. Sampling this way should not affect the model performance at all.

Thank you.