How to specify nested model

153 views Asked by At

I am using runjags to model some hierarchical data. I can model one level of the hierarchy but I do not know how to extend it to more levels. I am trying to do this using method 3 from page 24 of "Bayesian Hierarchical Modelling using WinBUGS", by Nicky Best et al which uses a nested loop (as opposed to nested indexing).

For one level I can model

filestring <-
  "model{ 
    for(j in 1:Ninner){
      for(i in 1:N){
        y[j,i] ~ dnorm(beta + alpha[j], py)
      }
      alpha[j] ~ dnorm(0, taua)
    }

  beta ~ dnorm(0, 0.001)
  taua ~ dgamma(0.01, 0.01)
  py ~ dgamma(0.01, 0.1)
}"

INITS <- list(list(.RNG.seed=1, .RNG.name="base::Wichmann-Hill"), 
              list(.RNG.seed=2, .RNG.name="base::Wichmann-Hill"))
results <- run.jags(filestring, monitor=c("py", "beta", "alpha"), data=jags_data, sample=1e3, 
                    n.chains=2, inits=INITS, summarise=FALSE)

I then tried to add another level using

for(k in 1:Nouter){
 for(j in 1:Ninner){
  for(i in 1:N){
    y[j,i] ~ dnorm(beta + alpha_in[j] + alpha_out[k], py)
} } }

but receive the error

Compilation error on line 5.
Attempt to redefine node y[1,1]

How do I extend this to model another level of which the first one is nested? Thank you.

Below is some reproducible data which shows the structure of the data. I wish to estimate random estimates for both outer_grp and the inner_grp.

library(data.table)
library(runjags)

set.seed(12345)
dat <- data.table(outer_grp=rep(1:5, each=10), inner_grp=rep(1:10, each=5), y=rnorm(50), x=rnorm(50), time=1:5)

wdat = dcast(dat, inner_grp + outer_grp ~ time, value.var=c("y", "x"))
jags_data = c(setNames(
  lapply(split.default(wdat, substr(names(wdat), 1, 1)),as.matrix), 
  c("inner_grp", "outer_grp","x", "y")),
  N=5, Nouter=5, Ninner=10)

EDIT

Perhaps it is enough to model like??

filestring <-
  "model{ 

     for(j in 1:Ninner){
      for(i in 1:N){
        y[j,i] ~ dnorm(beta + alpha_in[j] + alpha_out[outer_grp[j]], py)
      }
     }

  for(i in 1:Ninner){ alpha_in[i] ~ dnorm(0, taua) }
  for(i in 1:Nouter){ alpha_out[i] ~ dnorm(0, taub) }
  beta ~ dnorm(0, 0.001)
  taua ~ dgamma(0.01, 0.01)
  taub ~ dgamma(0.01, 0.01)
  py ~ dgamma(0.01, 0.1)
}"
1

There are 1 answers

0
user2957945 On BEST ANSWER

It is possible to add the outer group intercept by using nested indexing while still using the loop format. I'll use the Pastes dataset from lme4 for comparison.

filestring <-
  "model{ 
     for(j in 1:Ninner){
      for(i in 1:N){
        y[j,i] ~ dnorm(beta + alpha_in[j] + alpha_out[batch[j]], py)
      }
     }

  for(i in 1:Ninner){ alpha_in[i] ~ dnorm(0, taua) }
  for(i in 1:Nouter){ alpha_out[i] ~ dnorm(0, taub) }
  beta ~ dnorm(0, 0.001)
  taua <- 1/(sa*sa)
  sa ~ dunif(0,100)
  taub <- 1/(sb*sb)
  sb ~dunif(0,100)
  py ~ dgamma(0.001, 0.001)
}"
INITS <- list(list(.RNG.seed=1, .RNG.name="base::Wichmann-Hill"), 
              list(.RNG.seed=2, .RNG.name="base::Wichmann-Hill"))
results <- run.jags(filestring, monitor=c("py", "beta", "alpha_in", "alpha_out", "sa", "sb"), 
                    data=jags_data, burnin=1e4, sample=1e4, n.chains=2, 
                    inits=INITS, summarise=0)
summary(results, vars=c("py", "beta", "sa", "sb"))

Compare to lme4

fm1 <- lmer(strength ~ (1|batch) + (1|sample), Pastes)
print(summary(fm1), corr=FALSE)

Data used

library(lme4); library(data.table); library(runjags)
data(Pastes); setDT(Pastes)
Pastes[,time := sequence(.N), by=sample]

# Change format to match question
wdat = dcast(Pastes, batch + sample ~ time, value.var="strength")
jags_data = list(y=as.matrix(wdat[,3:4]), batch=wdat$batch, N=2, Ninner=length(unique(wdat$sample)), Nouter=length(unique(wdat$batch)))