So I have a data frame like this

   Rank        State/Union territory  NSDP Per Capita (Nominal)(2019–20)[1][2]  state_id
0     1                          Goa                                  466585.0      30.0
1     2                       Sikkim                                  425656.0      11.0
2     3                        Delhi                                  376143.0       NaN
3     4                   Chandigarh                                       NaN       4.0
4     5                      Haryana                                  247207.0       6.0
5     6                    Telangana                                  225756.0       0.0
6     7                    Karnataka                                  223246.0      29.0
7     8                       Kerala                                  221904.0      32.0
8     9                   Puducherry                                  220949.0      34.0
9    10  Andaman and Nicobar Islands                                  219842.0       NaN
10   11                   Tamil Nadu                                  218599.0      33.0
11   12                      Gujarat                                  216329.0      24.0
12   13                      Mizoram                                  204018.0      15.0
13   14                  Uttarakhand                                  202895.0       5.0
14   15                  Maharashtra                                  202130.0      27.0
15   16             Himachal Pradesh                                  190255.0       2.0
16   17               Andhra Pradesh                                  168480.0      28.0
17   18            Arunachal Pradesh                                  164615.0       NaN
18   19                       Punjab                                  161083.0       3.0
20   20                     Nagaland                                  130282.0      13.0
21   21                      Tripura                                  125630.0      16.0
22   22                    Rajasthan                                  115492.0       8.0
23   23                  West Bengal                                  115348.0      19.0
24   24                       Odisha                                   98896.0      21.0
25   25                 Chhattisgarh                                  105281.0      22.0
26   26            Jammu and Kashmir                                  102882.0       NaN
27   27               Madhya Pradesh                                  103288.0      23.0
28   28                    Meghalaya                                   92174.0      17.0
29   29                        Assam                                   90758.0      18.0
30   30                      Manipur                                   84746.0      14.0
31   31                    Jharkhand                                   79873.0      20.0
32   32                Uttar Pradesh                                   65704.0       9.0
33   33                        Bihar                                   46664.0      10.0

And my other dictionary has

{'Telangana': 0, 'Andaman & Nicobar Island': 35, 'Andhra Pradesh': 28, 'Arunanchal Pradesh': 12, 'Assam': 18, 'Bihar': 10, 'Chhattisgarh': 22, 'Daman
& Diu': 25, 'Goa': 30, 'Gujarat': 24, 'Haryana': 6, 'Himachal Pradesh': 2, 'Jammu & Kashmir': 1, 'Jharkhand': 20, 'Karnataka': 29, 'Kerala': 32, 'Lakshadweep': 31, 'Madhya Pradesh': 23, 'Maharashtra': 27, 'Manipur': 14, 'Chandigarh': 4, 'Puducherry': 34, 'Punjab': 3, 'Rajasthan': 8, 'Sikkim': 11, 'Tamil Nadu': 33, 'Tripura': 16, 'Uttar Pradesh': 9, 'Uttarakhand': 5, 'West Bengal': 19, 'Odisha': 21, 'Dadara & Nagar Havelli': 26, 'Meghalaya': 17, 'Mizoram': 15, 'Nagaland': 13, 'NCT of Delhi': 7}

So you have probably seen the problem, Andaman and Nicobar Islands is present in both but spelled differently, like ' Andaman & Nicobar Island' in the dictionary. And this makes the final column NaN
9 10 Andaman and Nicobar Islands 219842.0 NaN

How can I combine this with difflib library?

I've tried

df_19_20['State/Union territory'] = df_19_20['State/Union territory'].apply(get_close_matches(df_19_20['State/Union territory'], id_d.keys()))

and

df_19_20['State/Union territory'] = get_close_matches(df_19_20['State/Union territory'], id_d.keys())

Is there something I'm missing? How can I process the columns to get the best match?

1

There are 1 answers

0
NickHilton On BEST ANSWER

The issue was in the application of df.apply

df.apply needs to be given a function taking in the value from each row it is being iterated over. You also need to clean the return of get_close_matches which returns a list, so you need to take the first element

df_19_20['State/Union territory'].apply(lambda x: get_close_matches(x, id_d.keys())[0])

should work