I'm having trouble figuring out how to maintain attribute updates across multiple tables to ensure data consistency.
For example, suppose I have many-to-many relationship between actors and fans. A fan can support many actors, and an actor have many fans. I make several tables to support my queries
CREATE TABLE fans (
fan_id uuid,
fan_attr_1 int,
fan_attr_2 int
PRIMARY KEY ((fan_id))
)
CREATE TABLE actors (
actor_id uuid,
actor_attr_1 int,
actor_attr_2 int
PRIMARY KEY ((actor_id))
)
CREATE TABLE actors_by_fan (
fan_id uuid,
actor_id uuid,
actor_attr_1 int,
actor_attr_2 int
PRIMARY KEY (fan_id, actor_id)
)
CREATE TABLE fans_by_actor (
actor_id uuid,
fan_id uuid,
fan_attr_1 int,
fan_attr_2 int
PRIMARY KEY (actor_id, fan_id)
)
Let's say I'm a fan and I'm on my settings page and I want to change my fan_attr_1 to a different value.
On the fans table I can update my attribute just fine since the application knows my fan_id and can key on that.
However I cannot change my fan_attr_1 on the fans_by_actor without first querying for the actor_ids tied to the fan.
This problem occurs for any time you want to update any attribute of either fans or actors.
I've tried looking online for people experiencing similar problems, but I couldn't find them. For example, in Datastax's Data Modeling course they use the examples with actors and videos in a many to many relationship where they have tables actors_by_video and videos_by_actor. The course, like the other online resources I've consulted, discussed modeling tables after queries, but haven't dug into how to maintain data integrity. In the actors_by_video table, what would happen if I want to change an actor's attribute? Wouldn't have have to go through every row of actors_by_video to find the partitions that contain the actor and update the attribute? That sounds very inefficient. The other option is to look for the video id's beforehand, but I read elsewhere that reads before writes are an antipattern in Cassandra.
What would be the best approach for tackling this problem either from a data modeling standpoint or from a CQL standpoint?
EDIT: - Fixed sentence stubs - Added context and prior research
Materialized Views are probably the best choice:
In versions prior to 3.0, create secondary indices and evaluate if their performance is acceptable. Later, after upgrading to 3.x, just drop the secondary indexes and create materialized views.