I am trying to calculate the inverse matrix using the Gauss-Jordan Method. For that, I need to find the solution X to A.X = I (A and X being N x N matrices, and I the identity matrix).
However, for every column vector of the solution matrix X I calculate in the first loop, I have to use the original matrix A, but I don't know why it keeps changing when I did a copy of it in the beginning.
def SolveGaussJordanInvMatrix(A):
N = len(A[:,0])
I = np.identity(N)
X = np.zeros([N,N], float)
A_orig = A.copy()
for m in range(N):
x = np.zeros(N, float)
v = I[:,m]
A = A_orig
for p in range(N): # Gauss-Jordan Elimination
A[p,:] /= A[p,p]
v[p] /= A[p,p]
for i in range(p): # Cancel elements above the diagonal element
v[i] -= v[p] * A[i,p]
A[i,p:] -= A[p,p:]*A[i,p]
for i in range(p+1, N): # Cancel elements below the diagonal element
v[i] -= v[p] * A[i,p]
A[i,p:] -= A[p,p:]*A[i,p]
X[:,m] = v # Add column vector to the solution matrix
return X
A = np.array([[2, 1, 4, 1 ],
[3, 4, -1, -1],
[1, -4, 7, 5],
[2, -2, 1, 3]], float)
SolveGaussJordanInvMatrix(A)
Does anyone know how turn A back to its original form after the Gauss-Elimination loop?
I'm getting
array([[ 228.1, 0. , 0. , 0. ],
[-219.9, 1. , 0. , 0. ],
[ -14.5, 0. , 1. , 0. ],
[-176.3, 0. , 0. , 1. ]])
and expect
[[ 1.36842105 -0.89473684 -1.05263158 1. ]
[-1.42105263 1.23684211 1.13157895 -1. ]
[ 0.42105263 -0.23684211 -0.13157895 -0. ]
[-2. 1.5 1.5 -1. ]]