I want to use sklearn.ensamble's AdaBoostClassifier for a simple binary classification task. How can I use multiple, pre-fit perceptrons as the weak classifiers in an AdaBoostClassifier?
i.e.
from sklearn.ensemble import AdaBoostClassifier
from sklearn import linear_model
Xa, ya, Xb, yb #training data
#train perceptrons
perceptron_A = linear_model.Perceptron(n_iter=200)
perceptron_A.fit(Xa, ya)
perceptron_B = linear_model.Perceptron(n_iter=200)
perceptron_B.fit(Xb, yb)
# Then, can I initiate an AdaBoostClassifier with existing perceptrons?
ada_real = AdaBoostClassifier(
base_estimator='Perceptron', # [perceptron_A, perceptron_B]
learning_rate=learning_rate,
n_estimators=2,
algorithm="SAMME.R")
Or, do I need to build the AdaBoost manually?