I have a dataset that includes both numeric and object in the features. Additionally some of the features with object datatype have missing values. I created a modified version of Imputer (following the instructions on another post) to take care of the missing value for both numeric and categorial datatype but when I apply to my dataset it returns AttributeError. I believe I am making a silly mistake in the definition of fit method for the impute and i appreciate your insight. Here is the my code and the error:
import os
import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer
#load the data
path='~/Desktop/ML/Hands_on/housing_train.csv'
path=os.path.expanduser(path)
data=pd.read_csv(path)
#select the columns_names including dtype=object && missing data
object_data=data.select_dtypes(include=['object'])
object_data_null=[]
for col in object_data.columns:
if object_data[col].isnull().any():
object_data_null.append(col)
class GeneralImputer(Imputer):
def __init__(self, **kwargs):
Imputer.__init__(self, **kwargs)
def fit(self, X, y=None):
if self.strategy == 'most_frequent':
self.fills = pd.DataFrame(X).mode(axis=0).squeeze()
self.statistics_ = self.fills.values
return self
else:
return Imputer.fit(self, X, y=y)
def transform(self, X):
if hasattr(self, 'fills'):
return pd.DataFrame(X).fillna(self.fills).values.astype(str)
else:
return Imputer.transform(self, X)
imputer=GeneralImputer(strategy='most_frequent', axis=1)
for i in object_data_null:
imputer.fit(data[i])
data[i]=imputer.transform(data[i])
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-29-989e78355872> in <module>()
38 object_data_null
39 for i in object_data_null:
---> 40 imputer.fit(data[i])
41 data[i]=imputer.transform(data[i])
42
<ipython-input-29-989e78355872> in fit(self, X, y)
23 if self.strategy == 'most_frequent':
24 self.fills = pd.DataFrame(X).mode(axis=0).squeeze()
---> 25 self.statistics_ = self.fills.values
26 return self
27 else:
AttributeError: 'str' object has no attribute 'values'
For a 1-sized object the
squeeze()
method will return a scaler object as mentioned in the documentationSo that means, for most of the time (which happens for all columns here), the mode of a column will be a single object and then the squeeze() will return just the string.
So no need to get
.values
after it. Change your fit() method to remove that: