I'm trying to implement Batchnorm2d() layer with:
class BatchNorm2d(nn.Module):
def __init__(self, num_features):
super(BatchNorm2d, self).__init__()
self.num_features = num_features
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.eps = 1e-5
self.momentum = 0.1
self.first_run = True
def forward(self, input):
# input: [batch_size, num_feature_map, height, width]
device = input.device
if self.training:
mean = torch.mean(input, dim=0, keepdim=True).to(device) # [1, num_feature, height, width]
var = torch.var(input, dim=0, unbiased=False, keepdim=True).to(device) # [1, num_feature, height, width]
if self.first_run:
self.weight = Parameter(torch.randn(input.shape, dtype=torch.float32, device=device), requires_grad=True)
self.bias = Parameter(torch.randn(input.shape, dtype=torch.float32, device=device), requires_grad=True)
self.register_buffer('running_mean', torch.zeros(input.shape).to(input.device))
self.register_buffer('running_var', torch.ones(input.shape).to(input.device))
self.first_run = False
self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean
self.running_var = (1 - self.momentum) * self.running_var + self.momentum * var
bn_init = (input - mean) / torch.sqrt(var + self.eps)
else:
bn_init = (input - self.running_mean) / torch.sqrt(self.running_var + self.eps)
return self.weight * bn_init + self.bias
But after training & testing I found that the results using my layer is incomparable with the results using nn.Batchnorm2d()
. There must be something wrong with it, and I guess the problem relates to initializing parameters in forward()
? I did that because I don't know how to know the shape of input in __init__()
, maybe there is a better way. I don't know how to fix it, please help. Thanks!!
Got answers from HERE!\
So the shape of weight(bias) is (1, num_features, 1, 1), not (1, num_features, width, height).