I am building a linear optimization model and trying to extract key information from my decision variable values. instance.x.display()
displays the following sample
x : Size=121, Index=x_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
(1, 1) : 0 : None : 1 : False : True : Binary
(1, 2) : 0 : 0.0 : 1 : False : False : Binary
(1, 3) : 0 : 0.0 : 1 : False : False : Binary
(1, 4) : 0 : 1.0 : 1 : False : False : Binary
(1, 5) : 0 : 0.0 : 1 : False : False : Binary
(1, 6) : 0 : 0.0 : 1 : False : False : Binary
(1, 7) : 0 : 0.0 : 1 : False : False : Binary
(1, 8) : 0 : 0.0 : 1 : False : False : Binary
(1, 9) : 0 : 0.0 : 1 : False : False : Binary
(1, 10) : 0 : 0.0 : 1 : False : False : Binary
(1, 11) : 0 : 0.0 : 1 : False : False : Binary
(2, 1) : 0 : 0.0 : 1 : False : False : Binary
(2, 2) : 0 : None : 1 : False : True : Binary
(2, 3) : 0 : 0.0 : 1 : False : False : Binary
(2, 4) : 0 : 0.0 : 1 : False : False : Binary
(2, 5) : 0 : 0.0 : 1 : False : False : Binary
I want to extract the values that are equal to 1, such as x(1,4) which is equal to 1.
I have tried the following code: instance.x.display(value(model.x[i,j] == 1))
which gives me the error message ValueError: Error retrieving component x[11,11]: The component has not been constructed.
I am thinking that this is because the value for this is 'None' just like x(1,1) and x(2,2) above.
Any ideas on how to code this to display something like this:
(1,4) -- 1
(2,3) -- 1
(3,5) -- 1
(4,2) -- 1
(5,4) -- 1
(6,7) -- 1
You can extract all values to a more user-friendly format by:
I am sure there is a nicer way but this should do the trick :)
Cheers