I am trying to build a classification model, but I don't have enough data. What would be the most appropriate way to create synthetic data based on my existing dataset if I have numerical and categorical features? I looked at using Vine copulas like here: https://sdv.dev/Copulas/tutorials/03_Multivariate_Distributions.html#Vine-Copulas but sampling such copulas gives floats even for the columns that I would like to be integers (label-encoded categorical features). And then I dont know how to convert such floats back to a categorical features. Sample toy code of my problem is below
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.datasets import fetch_openml
from copulas.multivariate import VineCopula, GaussianMultivariate
X, y = fetch_openml("titanic", version=1, as_frame=True, return_X_y=True)
X['label'] = y
# reducing features and removing nulls to keep things simple
X = X[['sex', 'age', 'fare', 'embarked', 'label']]
row_keep = X.isnull().sum(axis=1) == 0
df = X.loc[row_keep, :].copy()
df.reset_index(drop=True, inplace=True)
# encoding columns
cat_cols = ['sex', 'embarked', 'label']
num_cols = ['age', 'fare']
label_encoders = {}
for c in cat_cols:
cat_proc = preprocessing.LabelEncoder()
col_proc = cat_proc.fit_transform(df[c])
df[c] = col_proc
label_encoders[c] = cat_proc
# Fit a copula
copula = VineCopula('regular')
copula.fit(df)
# Sample synthetic data
df_synthetic = copula.sample(1000)
All the columns of df_synthetic are floats. How would I convert those back to ints that I can map back to categorical features? Is there another way to augment this sort of dataset? Would be even better, if it's performant and I can sample 7000-10000 new synthetic entries. The toy problem with 5 columns above took ~1mins to sample 1000 rows, but my real problem has 27 columns, which I imagine would take a lot longer.
To have your columns converted to
int
s, use round and then.astype(int)
:You might have to adjust values manually (ex. cap
sex
in [0,1] if some larger/smaller value has been generated), but that will strongly depend on your data characteristics.