I have a n-D array. I need to create a 1-D range tensor based on dimensions.
for an example:
x = tf.placeholder(tf.float32, shape=[None,4])
r = tf.range(start=0, limit=, delta=x.shape[0],dtype=tf.int32, name='range')
sess = tf.Session()
result = sess.run(r, feed_dict={x: raw_lidar})
print(r)
The problem is, x.shape[0] is none at the time of building computational graph. So I can not build the tensor using range. It gives an error.
ValueError: Cannot convert an unknown Dimension to a Tensor: ?
Any suggestion or help for the problem.
Thanks in advance
x.shape[0]
might not exist yet when running this code is graph mode. If you want a value, you need to usetf.shape(x)[0]
.More information about that behaviour in the documentation for
tf.Tensor.get_shape
. An excerpt (emphasis is mine):