How to correct (removing bias) IMU data from accelerometer and gyroscope measurement?

3.1k views Asked by At

I am currently working on a mission to fuse GNSS and IMU for a more accurate navigation system for autonomous vehicles. I am very familiar with using GNSS to get the accurate position, however I'm a newbie in using IMU sensor. I've read several kinds of literature but am still confused about which better way should I do to remove bias from the accelerometer and gyroscope measurement.

I have 2 kinds of raw measurement data using MPU-9250, they are acceleration data (m/s2) in the x,y, z-axis and angular velocity data (deg/s) also in the x,y, z-axis. I have tried to input these data into my sensor fusion program. Unfortunately, I got unsatisfied with accuracy.. Hence I think firstly I should correcting (removing bias) of raw data IMU, and then the corrected IMU data can be input to my fusion program.

I couldn't find an answer that my brain could understand or fit my situation. Can someone please share some information about this? Can I use a high-pass filter or a low-pass filter in this situation? I would really appreciate if there is someone could explain in detail to me without using complex math formulas/symbols, I'm not a mathematician and this is one of my problems when looking for information.

Thank you in advance

1

There are 1 answers

0
Manoj On

Accelerometer and Gyroscope have substantial bias usually. You could break the bias down to factors like,

  1. Constant bias
  2. Bias induced by temperature variation.
  3. Bias instability

The static part of bias is easy to subtract out. If the unit starts from level orientation and without any movement, you could take samples for ~1s, average it and subtract it from your readings. Although, this step removes a big chuck of bias, it cannot still fully remove it (due to level not being perfect).

In case you observe that the temperature of IMU die varies during operation (even 5-10 deg matters), note down the bias and temperature (MPU9250 has an inbuilt temperature sensor). Fit a linear or quadratic curve that captures bias against temperature. Later on, use the temperature reading to estimate bias and subtract it out.

Even after implementing 1 and 2, there will still be some stubborn bias left. If the same is used in a fusion algorithm like Kalman filter (that is not formulated to estimate bias, the resulting position and orientation estimates will be biased too).

Bias can be estimated along with important states (like position) using some external reference/sensor like GNSS, Camera.

Complementary filter (low pass + high pass) or a Kalman filter can be formulated for this purpose.

Kalman filter approach:

Good amount of intuition along with some mathematics is needed to use this approach. Basically the work involves formulating prediction & measurement model and then provide rough noise variances for your measurements and prediction. An important thing to understand is that, Kalman filter assumes that the errors follow normal distribution without any bias. So the formulation should deliberately put bias terms as unknown states that should be estimated too (Do not assume that the sensor is bias free in the formulation)..

You could checkout my other answer to gain a detailed understanding of this approach.

Complementary filter approach

Complementary filter is simpler for simpler problems :P

The idea is that we use low pass filter on noisy measurement and high pass filter on biased measurement. Then add them up and call it a day.

Make sure that both the LPF and HPF are complements of each other (Transfer function of HPF should be 1-LPF). Typically first order filters with same time constants are used. Additionally the filter equations have to be converted from continuous laplace domain to discrete form (Read about ZOH, Tustins approximation...).

The final form is scattered around the internet too.

Personally I would use a Kalman filter for this purpose, but complementary filter can be used with same amount of effort. You could do this,

  1. Assume that the body is not accelerating on average in long term (1-10 s or so). Then you could say that the accelerometer measures the direction of gravity in long term relative to the IMU. Then arctan(accy, accz) can be used to obtain an estimate of pitch and roll. But this pitch and roll readings will suffer from substantial noise. Implement a low pass filter on it with time constant ~5 seconds or so. Additionally add the latest pitch/roll with dt*transformationMatrix*gyroscope to get another pitch and roll. But these suffer from bias. Implement a HPF over gyro based Pitch and Roll. Add them together to get Pitch and Roll. Lets call these IMU_PR.

  2. Now forget our original acceleration assumption. accelerometer gives specific force (which is net acceleration - gravity). Since we have Pitch and Roll angles (IMU_PR), we know gravities direction. Add gravity to accel readings to get an estimate of acceleration. Apply proper frame conversion to bring this acceleration to same coordinate frame as GPS (you will need an estimate of Yaw to do so. Fuse a magnetometer with gyroscope for this purpose). Then do vel = vel + acc*dt. Integrate it again to get an estimate of position from IMU. But this will drift due to the bias in accelerometer (and pitch, roll). Implement a high pass filter over this position and low pass filter over GPS position to get a final estimate.