I have a large Excel(xlsx and xls)
file with multiple sheet and I need convert it to RDD
or Dataframe
so that it can be joined to other dataframe
later. I was thinking of using Apache POI and save it as a CSV
and then read csv
in dataframe
. But if there is any libraries or API that can help in this Process would be easy. Any help is highly appreciated.
How to construct Dataframe from a Excel (xls,xlsx) file in Scala Spark?
119.7k views Asked by koiralo AtThere are 5 answers
Here are read and write examples to read from and write into excel with full set of options...
Source spark-excel from crealytics
Scala API Spark 2.0+:
Create a DataFrame from an Excel file
import org.apache.spark.sql._
val spark: SparkSession = ???
val df = spark.read
.format("com.crealytics.spark.excel")
.option("sheetName", "Daily") // Required
.option("useHeader", "true") // Required
.option("treatEmptyValuesAsNulls", "false") // Optional, default: true
.option("inferSchema", "false") // Optional, default: false
.option("addColorColumns", "true") // Optional, default: false
.option("startColumn", 0) // Optional, default: 0
.option("endColumn", 99) // Optional, default: Int.MaxValue
.option("timestampFormat", "MM-dd-yyyy HH:mm:ss") // Optional, default: yyyy-mm-dd hh:mm:ss[.fffffffff]
.option("maxRowsInMemory", 20) // Optional, default None. If set, uses a streaming reader which can help with big files
.option("excerptSize", 10) // Optional, default: 10. If set and if schema inferred, number of rows to infer schema from
.schema(myCustomSchema) // Optional, default: Either inferred schema, or all columns are Strings
.load("Worktime.xlsx")
Write a DataFrame to an Excel file
df.write
.format("com.crealytics.spark.excel")
.option("sheetName", "Daily")
.option("useHeader", "true")
.option("dateFormat", "yy-mmm-d") // Optional, default: yy-m-d h:mm
.option("timestampFormat", "mm-dd-yyyy hh:mm:ss") // Optional, default: yyyy-mm-dd hh:mm:ss.000
.mode("overwrite")
.save("Worktime2.xlsx")
Note: Instead of sheet1 or sheet2 you can use their names as well.. in this example given above Daily is sheet name.
- If you want to use it from spark shell...
This package can be added to Spark using the --packages
command line option. For example, to include it when starting the spark shell:
$SPARK_HOME/bin/spark-shell --packages com.crealytics:spark-excel_2.11:0.13.1
- Dependencies needs to be added (in case of maven etc...):
groupId: com.crealytics artifactId: spark-excel_2.11 version: 0.13.1
Tip : This is very useful approach particularly for writing maven test cases where you can place excel sheets with sample data in excel
src/main/resources
folder and you can access them in your unit test cases(scala/java), which createsDataFrame
[s] out of excel sheet...
- Another option you could consider is spark-hadoopoffice-ds
A Spark datasource for the HadoopOffice library. This Spark datasource assumes at least Spark 2.0.1. However, the HadoopOffice library can also be used directly from Spark 1.x. Currently this datasource supports the following formats of the HadoopOffice library:
Excel Datasource format:
org.zuinnote.spark.office.Excel
Loading and Saving of old Excel (.xls) and new Excel (.xlsx) This datasource is available on Spark-packages.org and on Maven Central.
Alternatively, you can use the HadoopOffice library (https://github.com/ZuInnoTe/hadoopoffice/wiki), which supports also encrypted Excel documents and linked workbooks, amongst other features. Of course Spark is also supported.
I have used com.crealytics.spark.excel-0.11 version jar and created in spark-Java, it would be the same in scala too, just need to change javaSparkContext to SparkContext.
tempTable = new SQLContext(javaSparkContxt).read()
.format("com.crealytics.spark.excel")
.option("sheetName", "sheet1")
.option("useHeader", "false") // Required
.option("treatEmptyValuesAsNulls","false") // Optional, default: true
.option("inferSchema", "false") //Optional, default: false
.option("addColorColumns", "false") //Required
.option("timestampFormat", "MM-dd-yyyy HH:mm:ss") // Optional, default: yyyy-mm-dd hh:mm:ss[.fffffffff] .schema(schema)
.schema(schema)
.load("hdfs://localhost:8020/user/tester/my.xlsx");
The solution to your problem is to use
Spark Excel
dependency in your project.Spark Excel has flexible
options
to play with.I have tested the following code to read from
excel
and convert it todataframe
and it just works perfectyou can give
sheetname
asoption
if your excel sheet has multiple sheetsI hope its helpful