How to constrain lmfit using mathematical constraints with limited data?

255 views Asked by At

After constructive comments from @M Newville, I have altered my original question in order to produce a minimal example.

I have performed experiments under different conditions. I have a lot more experimental data at Condition 1 than Condition 2:

import numpy as np
from lmfit import minimize, Parameters, fit_report    

# CONDITION 1.

x_data_1  = np.array([4.68, 4.70, 4.71, 4.72, 4.74])
y_data_1  = np.array([7.01, 7.03, 7.04, 7.04, 7.04]) 
z_data_1  = np.array([5.67, 5.67, 5.68, 5.69, 5.72])

n1_data_1 = np.array([0.374, 0.371, 0.369, 0.376, 0.375])
n2_data_1 = np.array([0.284, 0.284, 0.282, 0.282, 0.283])
n3_data_1 = np.array([0.284, 0.284, 0.282, 0.282, 0.283])

# CONDITION 2.

x_data_2  = np.array([10.72, 10.68, 10.77, 10.76, 10.79])

n1_data_2 = np.array([0.207, 0.205, 0.203, 0.224, 0.205])

However, I need Y>Z>X to be true for both conditions. X, Y, Z calculated by Function_X, Function_Y, and Function_Z depend on parameters A, B, C, D, and E. As do N1, N2, and N3 described by Function_N1, Function_N2, and Function_N3.

# FUNCTIONS.

def Function_X(A, B, C, E):
    return C-B**2/(A-E)

def Function_Y(A, B, C, E):
    return (4*E*((A-E)*C-B**2))/(A*C-B**2)

def Function_Z(A, B, C, D, E, X, Y):
    return 4*(1/X+1/Y+1/D-B/((A-E)*C-B**2))**(-1)

def Function_N1(A, B, E):
    return B/(2*(A-E))

def Function_N2(A, B, C, E):
    return 2*E*B/(A*C-B**2)

def Function_N3(A, B, C, E):
    return ((A-2*E)*C-B**2)/(A*C-B**2)

On the one hand, FitFunction1 is able to achieve the desired Y>Z>X (y_computed_1>z_computed_1>x_computed_1) without using any mathematical constraints due to the larger amount of data.

# FIT FUNCTION (CONDITION 1).

def FitFunction1(params1, x_data_1=None, y_data_1=None, z_data_1=None, n1_data_1=None, n2_data_1=None, n3_data_1=None):
    # MODEL.
    x_mod  = Function_X(params1['A'], params1['B'], params1['C'], params1['E'])
    y_mod  = Function_Y(params1['A'], params1['B'], params1['C'], params1['E'])
    z_mod  = Function_Z(params1['A'], params1['B'], params1['C'], params1['D'], params1['E'], x_mod, y_mod)
    n1_mod = Function_N1(params1['A'], params1['B'], params1['E'])
    n2_mod = Function_N2(params1['A'], params1['B'], params1['C'], params1['E'])
    n3_mod = Function_N3(params1['A'], params1['B'], params1['C'], params1['E'])
    # RESIDUALS.
    x_res  = x_data_1  - x_mod
    y_res  = y_data_1  - y_mod
    z_res  = z_data_1  - z_mod
    n1_res = n1_data_1 - n1_mod
    n2_res = n2_data_1 - n2_mod
    n3_res = n3_data_1 - n3_mod
    return np.concatenate((x_res.ravel(), y_res.ravel(), z_res.ravel(), n1_res.ravel(), n2_res.ravel(), n3_res.ravel()))

params1 = Parameters()
params1.add('fc',    value= 1000, min=10, max=100000)
params1.add('alpha', value=0.4, min=0.2, max=0.8)
params1.add('A', value=20, min=10, max=30)
params1.add('B', value=10, min=1, max=15)
params1.add('C', value=15, min=10, max=20)
params1.add('D', value=2.5, min=1, max=5)
params1.add('E', value=5, min=2.5, max=7.5)

res1 = minimize(FitFunction1, params1, kws={'x_data_1': x_data_1, 'y_data_1': y_data_1, 'z_data_1': z_data_1, 'n1_data_1': n1_data_1, 'n2_data_1': n2_data_1, 'n3_data_1': n3_data_1})

print(fit_report(res1))

for keys in res1.params:
    exec(f'jf_{keys}_1 = res1.params[keys].value')

x_computed_1 = Function_X(jf_A_1, jf_B_1, jf_C_1, jf_E_1)
y_computed_1 = Function_Y(jf_A_1, jf_B_1, jf_C_1, jf_E_1)
z_computed_1 = Function_Z(jf_A_1, jf_B_1, jf_C_1, jf_D_1, jf_E_1, Function_X(jf_A_1, jf_B_1, jf_C_1, jf_E_1), Function_Y(jf_A_1, jf_B_1, jf_C_1, jf_E_1))

On the other hand, FitFunction2 is unable to produce the same (Y>Z>X) left unconstrained (without mathematical constraints) due to the smaller amount of data.

# FIT FUNCTION (CONDITION 2).

def FitFunction2(params2, x_data_2=None, n1_data_2=None):
    # MODEL.
    x_mod  = Function_X(params2['A'], params2['B'], params2['C'], params2['E'])
    n1_mod = Function_N1(params2['A'], params2['B'], params2['E'])
    # RESIDUALS.
    x_res  = x_data_2 - x_mod
    n1_res = n1_data_2 - n1_mod
    return np.concatenate((x_res.ravel(), n1_res.ravel()))

params2 = Parameters()
params2.add('fc',    value= 1000, min=10, max=100000)
params2.add('alpha', value=0.4, min=0.2, max=0.8)
params2.add('A', value=20, min=10, max=30)
params2.add('B', value=10, min=1, max=15)
params2.add('C', value=15, min=10, max=20)
params2.add('D', value=2.5, min=1, max=5)
params2.add('E', value=5, min=2.5, max=7.5)
params2.add('X', value=np.mean(x_data_2), min=0, expr='C-B**2/(A-E)')
params2.add('Z_minus_X', value=1, vary=True, min=0)
params2.add('Y_minus_Z', value=1, vary=True, min=0)
params2.add('Z', value=10, expr='X + Z_minus_X', min=0)#, expr='(4*E*((A-E)*C-B**2))/(A*C-B**2)')
params2.add('Y', value=10, expr='Z + Y_minus_Z', min=0)#, expr='4*(1/X+1/Y+1/D-B/((A-E)*C-B**2))**(-1)')

res2 = minimize(FitFunction2, params2, kws={'x_data_2': x_data_2, 'n1_data_2': n1_data_2})

print(fit_report(res2))

Note that parameter D is not present in FitFunction2. I tried to introduce additional five constraints to enforce Y>Z>X based on another question but it does not work. I know that the result of FitFunction2 does not depend on parameters X, Y, and Z in the current configuration. I wonder however if there is a way to make the result of FitFunction2 somehow depend on them with another configuration.

  • Is it possible to arrange parameters A, B, C, D, E in FitFunction2 so that Y>Z>X using mathematical constraints (or any other method)?
0

There are 0 answers